This article provides a literature review of finite element simulation studies for metallic powder bed additive manufacturing processes. The various approaches in the numerical modeling of the processes and the selection of materials properties are presented in detail. Simulation results are categorized according to three major findings' groups (i.e. temperature field, residual stresses and melt pool characteristics). Moreover, the means used for the experimental validation of the simulation findings are described. Looking deeper into the studies reviewed, a number of future directions are identified in the context of transforming simulation into a powerful tool for the industrial application of additive manufacturing. Smart modeling approaches should be developed, materials and their properties should be further characterized and standardized, commercial packages specialized in additive manufacturing simulation have to be developed and simulation needs to become part of the modern digital production chains. Finally, the reviewed studies are organized in a table and characterized according to the process and material studied, the modeling methodology and the experimental validation method used in each of them. The key findings of the reviewed studies are also summarized.
Sustainability is a key factor in an automotive OEMs' business strategy. Vehicle electrification in particular has received increased attention, and major manufacturers have already undertaken significant investments in this area. However, in order to fully confront the sustainability challenge in the automotive industry, lightweight design in additional to alternative propulsion technologies is also required. Vehicle weight is closely correlated with fuel consumption and range for internal combustion and electrified vehicles, respectively, and therefore, weight reduction is a primary objective. Over the past decades, advanced steel and aluminium-forming technologies have seen considerable development, resulting in significant weight reduction of vehicle components. Hot stamping is one of the most established processes for advanced steel and aluminium alloys. The process offers low-forming loads and high formability as well as parts with high strength and minimal springback. However, the high temperatures of the formed materials over numerous cycles and the significant cooling required to ensure desirable component properties necessitate advanced tooling designs. Traditionally, casting and machining are used to manufacture tools; although in recent years, additive manufacturing has gained significant interest due to the design freedom offered. In this paper, a comprehensive review is performed for the state-of-the-art hot-forming tooling designs in addition to identifying the future direction of Additive Manufactured (AM) tools. Specifically, material properties of widely used tooling materials are first reviewed and selection criteria are proposed which can be used for the transition to AM tools. Moreover, key variables affecting the success of hot stamping, for example cooling rate of the component, are reviewed with the various approaches analysed by analytical and numerical techniques. Finally, a number of future directions for adopting additive manufacturing in the production of hot stamping tools are proposed, based on a thorough analysis of the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.