The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan), as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR) and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB), and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.
The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes.
Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity.
Currently there is a lack of effective seed treatments for bacterial pathogens, with Cu-based compounds (the only chemical treatments permitted under organic farming standards) only providing partial control. The aim of this study was to quantify the effect of alternative treatments for the control of bacterial canker (Clavibacter michiganensis subsp. michiganensis), a major seed-borne bacterial disease in tomato. Treatments assessed were acidified nitrite (a treatment previously shown to control the seed-borne fungal disease Didymella lycopersici), antagonistic strains of Bacillus spp. and compost extracts, which were not previously evaluated as treatments for seed-borne diseases. Efficacy of treatments was determined in a seed disinfection assay. Ten-minute immersion of seed in 300 mmol l −1 acidified nitrite resulted in 98% being pathogen free. Copper hydroxide, certain strains of Bacillus spp. and all compost extracts resulted in 100% pathogen free seed.
Studies of the species composition, seasonal appearance, and abundance of Auchenorrhyncha in olive crops is of paramount importance to reduce the potential of Xylella fastidiosa to invade new areas. As similar investigations had not previously been conducted in Greece, extensive surveys were undertaken in olive orchards located in three of the most important regions for olive production in central Greece (Fthiotida), south-central Greece (Attica), and southern Greece (Chania). Surveys took place over a 13-mo period, using Malaise traps examined on a monthly basis. Results showed high levels of species richness in the olive orchards, and the Auchenorrhyncha diversity varied among the regions surveyed. Most of the species listed as potential vectors of X. fastidiosa in Europe were found in relatively low numbers. Furthermore, many insects of the Deltocephalinae subfamily were found, whose behavior as vectors should be further studied. The dominant and most frequent species found in the three regions were tested and found not to be associated with transmission of the bacterium. This study may serve as an alert, showing that the most commonly found species differ from those identified in similar studies in Italy, and thus other species should be examined as potential vectors. The results of the present study provide new insights into the seasonal abundance and dynamics of potential vectors of X. fastidosa in several regions of Greece, and also provide information that may prove valuable for the effective containment and eradication of this threat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.