Considered here are Boussinesq systems of equations of surface water wave theory over a variable bottom. A simplified such Boussinesq system is derived and solved numerically by the standard Galerkin-finite element method. We study by numerical means the generation of tsunami waves due to bottom deformation and we compare the results with analytical solutions of the linearized Euler equations. Moreover, we study tsunami wave propagation in the case of the Java 2006 event, comparing the results of the Boussinesq model with those produced by the finite difference code MOST, that solves the shallow water wave equations.
A highly accurate numerical scheme is presented for the Serre system of partial differential equations, which models the propagation of dispersive shallow water waves in the fully-nonlinear regime. The fully-discrete scheme utilizes the Galerkin / finiteelement method based on smooth periodic splines in space, and an explicit fourth-order Runge-Kutta method in time. Computations compared with exact solitary and cnoidal wave solutions show that the scheme achieves the optimal orders of accuracy in space and time. These computations also show that the stability of this scheme does not impose very restrictive conditions on the temporal stepsize. In addition, solitary, cnoidal, and dispersive shock waves are studied in detail using this numerical scheme for the Serre system and compared with the 'classical' Boussinesq system for small-amplitude shallow water waves. The results show that the interaction of solitary waves in the Serre system is more inelastic. The efficacy of the numerical scheme for modeling dispersive shocks is shown by comparison with asymptotic results. These results have application to the modeling of shallow water waves of intermediate or large amplitude.
Finite volume schemes are commonly used to construct approximate solutions to
conservation laws. In this study we extend the framework of the finite volume
methods to dispersive water wave models, in particular to Boussinesq type
systems. We focus mainly on the application of the method to bidirectional
nonlinear, dispersive wave propagation in one space dimension. Special emphasis
is given to important nonlinear phenomena such as solitary waves interactions,
dispersive shock wave formation and the runup of breaking and non-breaking long
waves.Comment: 41 pafes, 20 figures. Other author's papers can be downloaded at
http://www.lama.univ-savoie.fr/~dutykh
Abstract. After we derive the Serre system of equations of water wave theory from a generalized variational principle, we present some of its structural properties. We also propose a robust and accurate finite volume scheme to solve these equations in one horizontal dimension. The numerical discretization is validated by comparisons with analytical, experimental data or other numerical solutions obtained by a highly accurate pseudo-spectral method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.