We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term (which does not share the quadratic aspect) in the limit, then, the lack of L 2 bounds which can be handled with homogeneous Morrey-Campanato estimates, and finally the problem of uniqueness which, at several stage of the proof, is related to outgoing conditions at infinity.
Finite volume schemes are commonly used to construct approximate solutions to
conservation laws. In this study we extend the framework of the finite volume
methods to dispersive water wave models, in particular to Boussinesq type
systems. We focus mainly on the application of the method to bidirectional
nonlinear, dispersive wave propagation in one space dimension. Special emphasis
is given to important nonlinear phenomena such as solitary waves interactions,
dispersive shock wave formation and the runup of breaking and non-breaking long
waves.Comment: 41 pafes, 20 figures. Other author's papers can be downloaded at
http://www.lama.univ-savoie.fr/~dutykh
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.