International audienceThis article details a general numerical framework to approximate so-lutions to linear programs related to optimal transport. The general idea is to introduce an entropic regularization of the initial linear program. This regularized problem corresponds to a Kullback-Leibler Bregman di-vergence projection of a vector (representing some initial joint distribu-tion) on the polytope of constraints. We show that for many problems related to optimal transport, the set of linear constraints can be split in an intersection of a few simple constraints, for which the projections can be computed in closed form. This allows us to make use of iterative Bregman projections (when there are only equality constraints) or more generally Bregman-Dykstra iterations (when inequality constraints are in-volved). We illustrate the usefulness of this approach to several variational problems related to optimal transport: barycenters for the optimal trans-port metric, tomographic reconstruction, multi-marginal optimal trans-port and in particular its application to Brenier's relaxed solutions of in-compressible Euler equations, partial un-balanced optimal transport and optimal transport with capacity constraints
Abstract. A numerical method for the solution of the elliptic MongeAmpère Partial Differential Equation, with boundary conditions corresponding to the Optimal Transportation (OT) problem is presented. A local representation of the OT boundary conditions is combined with a finite difference scheme for the Monge-Ampère equation. Newton's method is implemented leading to a fast solver, comparable to solving the Laplace equation on the same grid several times. Theoretical justification for the method is given by a convergence proof in the companion paper [BFO12]. In this paper, the algorithm is modified to a simpler compact stencil implementation and details of the implementation are given. Solutions are computed with densities supported on non-convex and disconnected domains. Computational examples demonstrate robust performance on singular solutions and fast computational times.
Abstract. The numerical solution of the elliptic Monge-Ampère Partial Differential Equation hasbeen a subject of increasing interest recently [Glowinski, in 6th International Congress on Industrial and Applied Mathematics, ICIAM 07, Invited Lectures (2009) 155-192; Oliker and Prussner, Numer. Math. 54 (1988) which converge even for singular solutions. However, many of the newly proposed methods lack numerical evidence of convergence on singular solutions, or are known to break down in this case. In this article we present and study the performance of two methods. The first method, which is simply the natural finite difference discretization of the equation, is demonstrated to be the best performing method (in terms of convergence and solution time) currently available for generic (possibly singular) problems, in particular when the right hand side touches zero. The second method, which involves the iterative solution of a Poisson equation involving the Hessian of the solution, is demonstrated to be the best performing (in terms of solution time) when the solution is regular, which occurs when the right hand side is strictly positive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.