In this paper, we introduce a notion of barycenter in the Wasserstein space which generalizes McCann's interpolation to the case of more than two measures. We provide existence, uniqueness, characterizations and regularity of the barycenter, and relate it to the multimarginal optimal transport problem considered by Gangbo andŚwiȩch in [8]. We also consider some examples and in particular rigorously solve the gaussian case. We finally discuss convexity of functionals in the Wasserstein space.
International audienceThis article details a general numerical framework to approximate so-lutions to linear programs related to optimal transport. The general idea is to introduce an entropic regularization of the initial linear program. This regularized problem corresponds to a Kullback-Leibler Bregman di-vergence projection of a vector (representing some initial joint distribu-tion) on the polytope of constraints. We show that for many problems related to optimal transport, the set of linear constraints can be split in an intersection of a few simple constraints, for which the projections can be computed in closed form. This allows us to make use of iterative Bregman projections (when there are only equality constraints) or more generally Bregman-Dykstra iterations (when inequality constraints are in-volved). We illustrate the usefulness of this approach to several variational problems related to optimal transport: barycenters for the optimal trans-port metric, tomographic reconstruction, multi-marginal optimal trans-port and in particular its application to Brenier's relaxed solutions of in-compressible Euler equations, partial un-balanced optimal transport and optimal transport with capacity constraints
International audienceReplacing positivity constraints by an entropy barrier is popular to approximate solutions of linear programs. In the special case of the optimal transport problem, this technique dates back to the early work of Schr\"odinger. This approach has recently been used successfully to solve optimal transport related problems in several applied fields such as imaging sciences, machine learning and social sciences. The main reason for this success is that, in contrast to linear programming solvers, the resulting algorithms are highly parallelizable and take advantage of the geometry of the computational grid (e.g. an image or a triangulated mesh). The first contribution of this article is the proof of the Γ-convergence of the entropic regularized optimal transport problem towards the Monge-Kantorovich problem for the squared Euclidean norm cost function. This implies in particular the convergence of the optimal entropic regularized transport plan towards an optimal transport plan as the entropy vanishes. Optimal transport distances are also useful to define gradient flows as a limit of implicit Euler steps according to the transportation distance. Our second contribution is a proof that implicit steps according to the entropic regularized distance converge towards the original gradient flow when both the step size and the entropic penalty vanish (in some controlled way)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.