Quercetin (Que) is a flavonoid associated with high oxygen radical scavenging activity and potential neuroprotective activity against Alzheimer's disease. Que's oral bioavailability is limited by its low water solubility and extended peripheral metabolism; thus, nasal administration may be a promising alternative to achieve effective Que concentrations in the brain. The formation of Que−2-hydroxypropylated−β-cyclodextrin (Que/HP-β-CD) complexes was previously found to increase the molecule's solubility and stability in aqueous media. Que−methyl−β-cyclodextrin (Que/Me-β-CD) inclusion complexes were prepared, characterized, and compared with the Que/HP-β-CD complex using biophysical and computational methods (phase solubility, fluorescence and NMR spectroscopy, differential scanning calorimetry (DSC), and molecular dynamics simulations (MDS)) as candidates for the preparation of nose-to-brain Que's delivery systems. DSC thermograms, NMR, fluorescence spectroscopy, and MDS confirmed the inclusion complex formation of Que with both CDs. Differences between the two preparations were observed regarding their thermodynamic stability and inclusion mode governing the details of molecular interactions. Que's solubility in aqueous media at pH 1.2 and 4.5 was similar and linearly increased with both CD concentrations. At pH 6.8, Que's solubility was higher and positively deviated from linearity in the presence of HP-β-CD more than with Me-β-CD, possibly revealing the presence of more than one HP-β-CD molecule involved in the complex. Overall, water solubility of lyophilized Que/Me-β-CD and Que/HP-β-CD products was approximately 7−40 times and 14−50 times as high as for pure Que at pH 1.2−6.8. In addition, the proof of concept experiment on ex vivo permeation across rabbit nasal mucosa revealed measurable and similar Que permeability profiles with both CDs and negligible permeation of pure Que. These results are quite encouraging for further ex vivo and in vivo evaluation toward nasal administration and nose-to-brain delivery of Que.
The aim of the present investigation was to develop matrix tablet formulations for the controlled release of two new tuberculocidal adamantane aminoethers (compounds and ), congeneric to the adamantane derivative which is in final clinical trials, and aminoethers () and (), using carefully selected excipients, such as polyvinylpyrrolidone, sodium alginate and lactose. The tablets were prepared using the direct compression method and dissolution experiments were conducted using the US Pharmacopoeia type II apparatus (paddle method) in gastric and intestinal fluids. The results suggest that both analogues, more lipophilic than and aminoethers () and (), have the requisite release characteristics for oral administration. In conclusion, these formulations merit further assessment by conducting studies, at a later stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.