Modern technologies allow large, complex biomedical datasets to be collected from patient cohorts. These datasets are comprised of both continuous and categorical data (“Mixed Data”), and essential variables may be unobserved in this data due to the complex nature of biomedical phenomena. Causal inference algorithms can identify important relationships from biomedical data; however, handling the challenges of causal inference over mixed data with unmeasured confounders in a scalable way is still an open problem. Despite recent advances into causal discovery strategies that could potentially handle these challenges; individually, no study currently exists that comprehensively compares these approaches in this setting. In this paper, we present a comparative study that addresses this problem by comparing the accuracy and efficiency of different strategies in large, mixed datasets with latent confounders. We experiment with two extensions of the Fast Causal Inference algorithm: a maximum probability search procedure we recently developed to identify causal orientations more accurately, and a strategy which quickly eliminates unlikely adjacencies in order to achieve scalability to high-dimensional data. We demonstrate that these methods significantly outperform the state of the art in the field by achieving both accurate edge orientations and tractable running time in simulation experiments on datasets with up to 500 variables. Finally, we demonstrate the usability of the best performing approach on real data by applying it to a biomedical dataset of HIV-infected individuals.Electronic supplementary materialThe online version of this article (10.1007/s41060-018-0104-3) contains supplementary material, which is available to authorized users.
Parkinson’s disease and related synucleinopathies are characterized by the abnormal accumulation of alpha-synuclein aggregates, loss of dopaminergic neurons, and gliosis in the substantia nigra. Although clinical evidence and in vitro studies indicate disruption of the Blood-Brain Barrier in Parkinson’s disease, the mechanisms mediating the endothelial dysfunction remain elusive. Lack of relevant models able to recapitulate the order of events driving the development of the disease in humans has been a significant bottleneck in the identification of specific successful druggable targets. Here we leveraged the Organs-on-Chips technology to engineer a human Brain-Chip representative of the substantia nigra area of the brain containing dopaminergic neurons, astrocytes, microglia, pericytes, and microvascular brain endothelial cells, cultured under fluid flow. Our αSyn fibril-induced model was capable of reproducing several key aspects of Parkinson’s disease, including accumulation of phosphorylated αSyn (pSer129-αSyn), mitochondrial impairment, neuroinflammation, and compromised barrier function. This model is poised to enable research into the dynamics of cell-cell interactions in human synucleinopathies and to serve as testing platform for novel therapeutic interventions, including target identification and target validation.
The SCIER platform is an integrated system of networked sensors and distributed computing facilities, aiming to detect and monitor a hazard, predict its evolution and assist the authorities in crisis management for hazards occurring at Wildlife Urban Interface (WUI) areas. The goal of SCIER is to make the vulnerable WUI zone safer for the citizens and protect their lives and property from environmental risks. To achieve its objective, SCIER integrates technologies such as: (1) wireless sensor networks for the detection and monitoring of disastrous natural hazards, (2) advanced sensor data fusion and management for accurately monitoring the dynamics of multiple interrelated risks, (3) environmental risk models for simulating and predicting the evolution of hazardous phenomena using Grid-computing. In this chapter we present the key software components of the SCIER system architecture, namely the sensor data fusion component and the predictive modeling and simulation component.
Σε αυτή τη Διδακτορική Διατριβή μελετάμε το πρόβλημα της παρακολούθησης και πρόβλεψης της εξέλιξης συνεχών αντικειμένων (π.χ. καταστροφικά περιβαλλοντικά φαινόμενα που διαχέονται) με τη χρήση Ασυρμάτων Δικτύων Αισθητήρων (ΑΔΑ) ευρείας κλίμακας. Προτείνουμε μια ευέλικτη αλλά και πρακτική προσέγγιση με δύο κύρια συστατικά: α) Ασύγχρονο συνεργατικό αλγόριθμο ΑΔΑ που εκτιμά, χρησιμοποιώντας δυναμικά σχηματιζόμενες ομάδες από τρεις συνεργαζόμενους κόμβους, τα τοπικά χαρακτηριστικά της εξέλιξης (διεύθυνση, φορά και ταχύτητα) του μετώπου, καθώς και β) Αλγόριθμο που ανακατασκευάζει το συνολικό μέτωπο του συνεχούς αντικειμένου συνδυάζοντας την πληροφορία των τοπικών εκτιμήσεων. Επιπλέον, ο αλγόριθμος ανακατασκευής, εκμεταλλευόμενος την δυνατότητα εκτίμησης της αβεβαιότητα ως προς τα τοπικά χαρακτηριστικά εξέλιξης, μπορεί να προβλέπει και την πιθανότητα το κάθε σημείο της περιοχής να έχει καλυφθεί από το συνεχές αντικείμενο σε κάθε χρονική στιγμή. Μέσω πλήθους προσομοιώσεων επικυρώσαμε την ικανότητα του συνεργατικού αλγορίθμου να εκτιμά με ακρίβεια τα τοπικά χαρακτηριστικά εξέλιξης πολύπλοκων συνεχών αντικειμένων, καθώς και την ευρωστία του σε αστοχίες των αισθητηρίων κόμβων κατά την επικοινωνία τους αλλά και λόγω της πιθανής ολοσχερούς καταστροφής τους. Τέλος, παρουσιάζουμε τη δυνατότητα του αλγορίθμου ανακατασκευής να παρακολουθεί με ακρίβεια την εξέλιξη μετώπων συνεχών αντικειμένων με πολύπλοκα σχήματα, χρησιμοποιώντας σχετικά μικρό αριθμό τοπικών εκτιμήσεων στις οποίες μπορεί να έχει υπεισέλθει και σημαντικό σφάλμα.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.