Oncogene-induced senescence (OIS) is crucial for tumour suppression. Senescent cells implement a complex pro-inflammatory response termed the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence, activates immune surveillance and paradoxically also has pro-tumourigenic properties. Here, we present evidence that the SASP can also induce “paracrine senescence” in normal cells both in culture and in human and mouse models of OIS in vivo. Coupling quantitative proteomics with small molecule screens, we identified multiple SASP components mediating paracrine senescence, including TGFβ family ligands, VEGF, CCL2 and CCL20. Amongst them, TGFβ ligands play a major role by regulating p15INK4b and p21CIP1. Expression of the SASP is controlled by inflammasome-mediated IL-1 signalling. The inflammasome and IL-1 signalling are activated in senescent cells and IL-1α expression can reproduce SASP activation, resulting in senescence. Our results demonstrate that the SASP can cause paracrine senescence and impact on tumour suppression and senescence in vivo.
TP53 mutation occurs in 50-75% of human pancreatic ductal adenocarcinomas (PDAC) following an initiating activating mutation in the KRAS gene. These p53 mutations frequently result in expression of a stable protein, p53 R175H , rather than complete loss of protein expression. In this study we elucidate the functions of mutant p53 (Trp53 R172H ), compared to knockout p53 (Trp53 fl ), in a mouse model of PDAC. First we find that although Kras G12D is one of the major oncogenic drivers of PDAC, most Kras G12D-expressing pancreatic cells are selectively lost from the tissue, and those that remain form premalignant lesions. Loss, or mutation, of Trp53 allows retention of the Kras G12D -expressing cells and drives rapid progression of these premalignant lesions to PDAC. This progression is consistent with failed growth arrest and/or senescence of premalignant lesions, since a mutant of p53, p53 R172P, which can still induce p21 and cell cycle arrest, is resistant to PDAC formation. Second, we find that despite similar kinetics of primary tumor formation, mutant p53 R172H , as compared with genetic loss of p53, specifically promotes metastasis. Moreover, only mutant p53 R172H -expressing tumor cells exhibit invasive activity in an in vitro assay. Importantly, in human PDAC, p53 accumulation significantly correlates with lymph node metastasis. In summary, by using 'knock-in' mutations of Trp53 we have identified two critical acquired functions of a stably expressed mutant form of p53 that drive PDAC; first, an escape from Kras G12D -induced senescence/ growth arrest and second, the promotion of metastasis.Kras | metastasis | p53 | pancreatic cancer | senescence P ancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer deaths in Europe and the United States, with an estimated 5-year overall survival of less than 5% (1, 2). Poor prognosis results from the aggressive nature of the disease, with as many as 90% of patients at the time of diagnosis harboring unresectable cancer that is extremely resistant to chemotherapy. PDAC arises from precursor lesions called pancreatic intraepithelial neoplasms (PanINs), which are characterized by the sequential accumulation of alterations in the KRAS oncogene and loss of the CDKN2A, TP53, and/or SMAD4 tumor suppressors in many cases (3). Although we know the frequencies of such mutations in PDAC, their specific functions during the development of pancreatic cancer remain unclear. Here we have used a genetically engineered mouse model of pancreatic cancer (4) to aid in understanding of the respective roles of gain-of-function Kras and Trp53 mutations.KRAS is mutated in almost all human PDACs (5), and this is one of the earliest genetic events driving development of human PanINs. Studies in murine models have further shown that activating KRAS mutation represents an initiating step in PDAC (6-9). The TP53 tumor suppressor gene is also frequently mutated in human pancreatic cancer (50-75%), predominantly through missense mutations (10). These often result in accumulati...
Maddocks, O. D. K. et al. (2017) Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature, 544(7650), pp. 372-376.There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.http://eprints.gla.ac.uk/140432/ AbstractThe non-essential amino acids serine and glycine are used in multiple anabolic processes that support cancer cell growth and proliferation (reviewed in ref. 1). While some cancer cells upregulate de novo serine synthesis 2,3,4 , many others rely on exogenous serine for optimal growth 5,6,7 . Restriction of dietary serine and glycine can reduce tumour growth in xenograft and allograft models 7,8 . Here we show that this observation translates into more clinically relevant autochthonous tumours in genetically engineered mouse models of intestinal cancer (driven by Apc inactivation) or lymphoma (driven by Myc activation). The increased survival following dietary restriction of serine and glycine in these models was further improved by antagonizing the anti-oxidant response. Disruption of mitochondrial oxidative phosphorylation (using biguanides) led to a complex response that could improve or impede the anti-tumour effect of serine and glycine starvation. Notably, Krasdriven mouse models of pancreatic and intestinal cancers were less responsive to depletion of serine and glycine, reflecting an ability of activated Kras to increase the expression of enzymes that are part of the serine synthesis pathway and thus promote de novo serine synthesis.To assess the effect of dietary serine and glycine (SG) restriction in autochthonous tumour models, we used genetically engineered mouse models (GEMMs) of lymphoma (Eμ-Myc) and intestinal tumours (defective Apc). Eμ-Myc mice develop pre-neoplastic lesions within 28-42 days after birth 9 , and adenoma initiation is evident days after birth in Apc Min/+ mice 10 . Accordingly, Apc Min/+ mice carried high tumour numbers at 80 days, which subsequently increased in size but not number (Extended Data Fig. 1a). Transferring mice from normal chow diet to experimental diets 60-80 days after birth showed that an SG-free diet significantly extended survival in these models carrying pre-malignant lesions (Fig. 1a, b), with a slightly lower tumour burden in Apc Min/+ mice on the SG-free diet at clinical end point (Extended Data Fig. 1a). The diet reproducibly decreased serum SG from around 150 μM to 65 μM (Fig. 1c-e), while showing minimal or inconsistent impact on other amino acids, glucose and lactate (Fig. 1c, d and Extended Data Figs 1b, 2a, b), These results were further validated using an inducible intestinal tumour model (Lgr5-creER;Apc fl/fl ); transferring mice to the SG-free diet a week after induction. Again, the experimental diet caused a significant increase in survival compared to control diet (containing purified amino acids) or normal chow (containing whole protein as a source of amino acids) (Fig. 1f). (c, control, n = 14; control,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.