The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Maddocks, O. D. K. et al. (2017) Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature, 544(7650), pp. 372-376.There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.http://eprints.gla.ac.uk/140432/ AbstractThe non-essential amino acids serine and glycine are used in multiple anabolic processes that support cancer cell growth and proliferation (reviewed in ref. 1). While some cancer cells upregulate de novo serine synthesis 2,3,4 , many others rely on exogenous serine for optimal growth 5,6,7 . Restriction of dietary serine and glycine can reduce tumour growth in xenograft and allograft models 7,8 . Here we show that this observation translates into more clinically relevant autochthonous tumours in genetically engineered mouse models of intestinal cancer (driven by Apc inactivation) or lymphoma (driven by Myc activation). The increased survival following dietary restriction of serine and glycine in these models was further improved by antagonizing the anti-oxidant response. Disruption of mitochondrial oxidative phosphorylation (using biguanides) led to a complex response that could improve or impede the anti-tumour effect of serine and glycine starvation. Notably, Krasdriven mouse models of pancreatic and intestinal cancers were less responsive to depletion of serine and glycine, reflecting an ability of activated Kras to increase the expression of enzymes that are part of the serine synthesis pathway and thus promote de novo serine synthesis.To assess the effect of dietary serine and glycine (SG) restriction in autochthonous tumour models, we used genetically engineered mouse models (GEMMs) of lymphoma (Eμ-Myc) and intestinal tumours (defective Apc). Eμ-Myc mice develop pre-neoplastic lesions within 28-42 days after birth 9 , and adenoma initiation is evident days after birth in Apc Min/+ mice 10 . Accordingly, Apc Min/+ mice carried high tumour numbers at 80 days, which subsequently increased in size but not number (Extended Data Fig. 1a). Transferring mice from normal chow diet to experimental diets 60-80 days after birth showed that an SG-free diet significantly extended survival in these models carrying pre-malignant lesions (Fig. 1a, b), with a slightly lower tumour burden in Apc Min/+ mice on the SG-free diet at clinical end point (Extended Data Fig. 1a). The diet reproducibly decreased serum SG from around 150 μM to 65 μM (Fig. 1c-e), while showing minimal or inconsistent impact on other amino acids, glucose and lactate (Fig. 1c, d and Extended Data Figs 1b, 2a, b), These results were further validated using an inducible intestinal tumour model (Lgr5-creER;Apc fl/fl ); transferring mice to the SG-free diet a week after induction. Again, the experimental diet caused a significant increase in survival compared to control diet (containing purified amino acids) or normal chow (containing whole protein as a source of amino acids) (Fig. 1f). (c, control, n = 14; control,...
The function of p53 is best understood in response to genotoxic stress, but increasing evidence suggests that p53 also plays a key role in the regulation of metabolic homeostasis. p53 and its family members directly influence various metabolic pathways, enabling cells to respond to metabolic stress. These functions are likely to be important for restraining the development of cancer but could also have a profound effect on the development of metabolic diseases, including diabetes. A better understanding of the metabolic functions of p53 family members may aid in the identification of therapeutic targets and reveal novel uses for p53-modulating drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.