Lavandula stoechas, a native plant of Greece, is rich in essential oil and fenchone is its major constituent. We examined the effect of the essential oil and its main constituents on soil metabolism and microbial growth. Addition of the essential oil or fenchone to soil samples induced a remarkable increase in soil respiration. This was accompanied by an increase in the soil bacterial population of three orders of magnitude. This sizable population was not qualitatively similar to that of the control soil samples. One bacterial strain dominated soil samples treated with L. stoechas essential oil or fenchone. By use of the disk diffusion assay, we evaluated the capacity of three bacterial strains that we isolated from the soil samples, as well as Escherichia coli and Bacillus subtilis (reference strains), to grow in the presence of the essential oil and three of its main constituents (fenchone, cineol, alpha-pinene). The substances tested did not inhibit the growth of the strain found to dominate the bacterial populations of treated soil samples; they severely inhibited B. subtilis. The other two isolated strains could also grow in liquid cultures in the presence of different quantities of essential oil or fenchone. Addition of fenchone at the end of the exponential phase increased the cell numbers of the strain that dominated the bacterial populations of treated soil samples, indicating use of the substrate added. On the basis of these results, we propose a scheme of successional stages during the decomposition process of the rich-in-essential-oil litter of aromatic plants that abound in the Mediterranean environment.
Τhe potential use of the aromatic plants Mentha spicata L. (spearmint) and Salvia fruticosa Mill. (sage) as soil amendments was evaluated. For this purpose, tomato seeds were sown in pots that had been filled with composts made from these plants and mixed with soil collected from an organically cultivated tomato field. A 2×2×4 [two types of fertilizer (synthetic and organic), two types of compost (M. spicata and S. fruticosa) and four compost rates (0%, 2%, 4% and 8%, w/w)] factorial experiment was used; the experiment was conducted twice in a growth chamber and lasted 60 days. At 0, 20, 40 and 60 days, after the establishment of the experiment, the soil bacterial and fungal abundance, the growth of nitrifying bacteria, the number of emerging weeds and the shoot length of tomato plants were measured in all treatments; at the end of the experiment, the above and belowground biomass of tomato plants was also determined. Soil microbial density increased with increasing compost rate of both species; the highest fungal and bacterial densities were recorded at 40 and 60 days, after the establishment of the experiment, respectively. Nitrifying bacteria were present in all treatments and at all sampling times. Both composts had a stimulating effect on tomato growth, which was remarkably pronounced with M. spicata. In contrast, weed emergence was reduced, but only in soils amended with M. spicata. The results suggest that M. spicata compost added at a rate of 4% to 8% is a very promising soil amendment, since it stimulates tomato growth, increases soil bacterial and fungal abundance and inhibits weed emergence. Further research is needed to elucidate the mode of action of M. spicata compost, its effect under field conditions and its possible use in mixed crop, rotational crop or cover crop systems.
We study here how soil bacterial communities of different ecosystems respond to disturbances caused by enrichments with monoterpenes that are common essential oil constituents. We used fenchone, 1,8-cineol and α-pinene, and soils from phrygana, a typical Mediterranean-type ecosystem where aromatic plants abound, and from another five ecosystem types, focusing on culturable bacteria. Patterns of response were common to all ecosystems, but responses themselves were not always as pronounced in phrygana as in the other ecosystems, suggesting that these enrichments are less of a disturbance there. More specifically, soil respiration and abundance of the bacterial communities increased, becoming from below two up to 16 times as high as in control soils (for both attributes) and remained at high levels as long as these compounds were present. Bacteria that can utilize these three compounds as substrates of growth became dominant members of the bacterial communities in the enriched soils. All changes were readily reversible once monoterpene addition stopped. Bacteria with the ability to utilize these monoterpenes as carbon sources were found in soils from all ecosystems, 15 strains in total, suggesting a rather universal presence; of these, six could also utilize the organic pollutants toluene or p-xylene. These results suggest also potential novel applications of monoterpenes in combating soil pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.