Knowledge on hydrochemistry is very important to assess the quality of water for effective management of water resources or drainage water reuse. On this basis, an assessment of water quality was conducted in the Agoulinitsa district in Peloponnese (western Greece). Both drainage and irrigation channel water samples have been collected, treated, and subjected to chemical analysis. A characterization has been carried out using the Piper-trilinear diagram. Assessment of the water samples from the point of view of sodium adsorption ratio, Na(+)%, and residual sodium carbonate indicated that 60.0% and 83.3% of the drainage water samples during pre- and post-irrigation season, respectively, as well as the irrigation channel water samples, are chemically suitable for irrigation use. Moreover, assessment of the water samples by comparing quality parameters with the Food and Agriculture Organization guidelines indicated that 20.0% and 44.4% of the drainage water samples collected during pre- and post-irrigation season, respectively, as well as the irrigation channel water samples could cause slight to moderate problems to the plants. On the other hand, 80.0% and 55.6% of the drainage water samples collected during pre- and post-irrigation season, respectively, could cause immediate development of severe problems to the plants growth.
The disposal of the excessive volume of degraded water coming from agricultural drainage systems is a serious environmental and economic issue, since a significant load of agrochemicals and salts contaminates water bodies downstream. An integrated on-farm drainage management (IFDM) system is an effective method of treatment by successively irrigating zones with drainage water. Each zone is cultivated with crops that have increasing tolerance to salinity, so that the drainage water effluents are minimized to an extent that the final drainage water volume is collected into an evaporation pond. The methodology of the system is proposed herein for a regional irrigation-drainage network (E1 in Agoulinitsa irrigation district in western Greece) as a method of reducing the disposal of agrochemicals in the coastal environment. Based on the design principles of an IFDM system, both the surface area of every irrigation zone and the costs of installing and operating the system are assessed. A scenario regarding the volume of drainage water that must be treated is examined as a sensitivity analysis. The results show that almost 15% of the cultivated area must be bounded for non-productive uses, resulting in a significant economic impact on the net present value of the investment.
The use of saline drainage water for irrigation is a management practice that results in fresh water savings and also addresses the problem of drainage water disposal. However, environmental and economic restrictions need to be considered in order to design a sustainable system. An optimisation routine is proposed here that aims to estimate the quantities of drainage water that could be used for irrigation. The proposed routine incorporates crop–water production functions to simulate a crop's performance under a saline environment. The area of implementation was the regional irrigation network of Agoulinitsa in western Greece, a coastal region with a shallow aquifer. Scenarios under different prices of fresh water and salinity values of drainage water were examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.