Inland waterway transport is becoming attractive due to its minimum environmental impact in comparison with other transportation modes. Fixed timetables and routes are adopted by most barge operators, avoiding the full utilization of the available resources. Therefore a flexible model is adopted to reduce the transportation cost and environmental impacts. This paper regards the route optimization of barges as a pickup and delivery problem (PDP). A Mixed Integer Programming (MIP) model is proposed to formulate the PDP with transshipment of barges, and an Adaptive Large Neighborhood Search (ALNS) is developed to solve the problem efficiently. The approach is evaluated based on a case study in the Rhine Alpine corridor and it is shown that ALNS is able to find good solutions in reasonable computation times. The results show that the cost is lower when there is more flexibility. Moreover, the cost comparison shows that transshipment terminals can reduce the cost for barge companies.
The standard particle swarm optimization (PSO) algorithm allocates the total available budget of function evaluations equally and concurrently among the particles of the swarm. In the present work, we propose a new variant of PSO where each particle is dynamically assigned different computational budget based on the quality of its neighborhood. The main goal is to favor particles with high-quality neighborhoods by asynchronously providing them with more function evaluations than the rest. For this purpose, we define quality criteria to assess a neighborhood with respect to the information it possesses in terms of solutions' quality and diversity. Established stochastic techniques are employed for the final selection among the particles. Different variants are proposed by combining various quality criteria in a singleor multi-objective manner. The proposed approach is assessed on widely used test suites as well as on a set of real-world problems. Experimental evidence reveals the efficiency of the proposed approach and its competitiveness against other PSO-based variants as well as different established algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.