In this work, we present a new multi-objective particle swarm optimization algorithm (PSO) characterized by the use of a strategy to limit the velocity of the particles. The proposed approach, called Speed-constrained Multi-objective PSO (SMPSO) allows to produce new effective particle positions in those cases in which the velocity becomes too high. Other features of SMPSO include the use of polynomial mutation as a turbulence factor and an external archive to store the nondominated solutions found during the search. Our proposed approach is compared with respect to five multi-objective metaheuristics representative of the state-of-the-art in the area. For the comparison, two different criteria are adopted: the quality of the resulting approximation sets and the convergence speed to the Pareto front. The experiments carried out indicate that SMPSO obtains remarkable results in terms of both, accuracy and speed.
Abstract-This paper contains a modern vision of the parallelization techniques used for evolutionary algorithms (EAs). The work is motivated by two fundamental facts: first, the different families of EAs have naturally converged in the last decade while parallel EAs (PEAs) seem still to lack unified studies, and second, there is a large number of improvements in these algorithms and in their parallelization that raise the need for a comprehensive survey. We stress the differences between the EA model and its parallel implementation throughout the paper. We discuss the advantages and drawbacks of PEAs. Also, successful applications are mentioned and open problems are identified. We propose potential solutions to these problems and classify the different ways in which recent results in theory and practice are helping to solve them. Finally, we provide a highly structured background relating PEAs in order to make researchers aware of the benefits of decentralizing and parallelizing an EA.
A Project Scheduling Problem consists in deciding who does what during the software project lifetime. This is a capital application in the practice of software engineering, since the total budget and human resources involved must be managed optimally in order to end in a successful project. In short, companies are principally concerned with reducing the duration and cost of a project, and these two goals are in conflict with each other. In this work we tackle the problem by using genetic algorithms (GAs) to solve many different software project scenarios. Thanks to our newly developed instance generator we can perform structured studies about the influence the most important attributes of the problem have on the solutions. Our conclusions show that GAs are quite flexible and accurate for this application, and an important tool for automatic project management.
Abstract-This paper studies static and dynamic decentralized versions of the search model known as cellular genetic algorithm (cGA), in which individuals are located in a specific topology and interact only with their neighbors. Making changes in the shape of such topology or in the neighborhood may give birth to a high number of algorithmic variants. We perform these changes in a methodological way by tuning the concept of ratio. Since the relationship (ratio) between the topology and the neighborhood shape defines the search selection pressure, we propose to analyze in depth the influence of this ratio on the exploration/exploitation tradeoff. As we will see, it is difficult to decide which ratio is best suited for a given problem. Therefore, we introduce a preprogrammed change of this ratio during the evolution as a possible additional improvement that removes the need of specifying a single ratio. A later refinement will lead us to the first adaptive dynamic kind of cellular models to our knowledge. We conclude that these dynamic cGAs have the most desirable behavior among all the evaluated ones in terms of efficiency and accuracy; we validate our results on a set of seven different problems of considerable complexity in order to better sustain our conclusions.Index Terms-Cellular genetic algorithm (cGA), evolutionary algorithm (EA), dynamic adaptation, neighborhood-to-population ratio.
Abstract. This paper introduces a new cellular genetic algorithm for solving multiobjective continuous optimization problems. Our approach is characterized by using an external archive to store non-dominated solutions and a feedback mechanism in which solutions from this archive randomly replaces existing individuals in the population after each iteration. The result is a simple and elitist algorithm called MOCell. Our proposal has been evaluated with both constrained and unconstrained problems and compared against NSGA-II and SPEA2, two state-of-theart evolutionary multiobjective optimizers. For the used benchmark, preliminary experiments indicate that MOCell obtains competitive results in terms of convergence, and it clearly outperforms the other two compared algorithms concerning the diversity of solutions along the Pareto front.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.