Abstract-This paper contains a modern vision of the parallelization techniques used for evolutionary algorithms (EAs). The work is motivated by two fundamental facts: first, the different families of EAs have naturally converged in the last decade while parallel EAs (PEAs) seem still to lack unified studies, and second, there is a large number of improvements in these algorithms and in their parallelization that raise the need for a comprehensive survey. We stress the differences between the EA model and its parallel implementation throughout the paper. We discuss the advantages and drawbacks of PEAs. Also, successful applications are mentioned and open problems are identified. We propose potential solutions to these problems and classify the different ways in which recent results in theory and practice are helping to solve them. Finally, we provide a highly structured background relating PEAs in order to make researchers aware of the benefits of decentralizing and parallelizing an EA.
We model the spreading of a crisis by constructing a global economic network and applying the Susceptible-Infected-Recovered (SIR) epidemic model with a variable probability of infection. The probability of infection depends on the strength of economic relations between the pair of countries, and the strength of the target country.It is expected that a crisis which originates in a large country, such as the USA, has the potential to spread globally, like the recent crisis. Surprisingly we show that also countries with much lower GDP, such as Belgium, are able to initiate a global crisis. Using the k-shell decomposition method to quantify the spreading power (of a node), we obtain a measure of "centrality" as a spreader of each country in the economic network. We thus rank the different countries according to the shell they belong to, and find the 12 most central countries. These countries are the most likely to spread a crisis globally. Of these 12 only six are large economies, while the other six are medium/small ones, a result that could not have been otherwise anticipated.Furthermore, we use our model to predict the crisis spreading potential of countries belonging to different shells according to the crisis magnitude.
We explore the Hawk-Dove game on networks with topologies ranging from regular lattices to random graphs with small-world networks in between. This is done by means of computer simulations using several update rules for the population evolutionary dynamics. We find the overall result that cooperation is sometimes inhibited and sometimes enhanced in those network structures, with respect to the mixing population case. The differences are due to different update rules and depend on the gain-to-cost ratio. We analyse and qualitatively explain this behavior by using local topological arguments.
We propose a network characterization of combinatorial fitness landscapes by adapting the notion of inherent networks proposed for energy surfaces [5]. We use the well-known family of NK landscapes as an example. In our case the inherent network is the graph where the vertices are all the local maxima and edges mean basin adjacency between two maxima. We exhaustively extract such networks on representative small NK landscape instances, and show that they are 'small-worlds'. However, the maxima graphs are not random, since their clustering coefficients are much larger than those of corresponding random graphs. Furthermore, the degree distributions are close to exponential instead of Poissonian. We also describe the nature of the basins of attraction and their relationship with the local maxima network.
In this paper we extend the investigation of cooperation in some classical evolutionary games on populations were the network of interactions among individuals is of the scale-free type. We show that the update rule, the payoff computation and, to some extent the timing of the operations, have a marked influence on the transient dynamics and on the amount of cooperation that can be established at equilibrium. We also study the dynamical behavior of the populations and their evolutionary stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.