Natural and bioprosthetic heart valves suffer from calcification, despite their differences in etiology and tissue material. The mechanism of developing calcific deposits in valve tissue is still not elucidated. The calcific deposits developed on human natural and bioprosthetic heart valves have been investigated and compared by physicochemical studies and microscopy investigations and the results were correlated with possible mechanisms of mineral crystal growth. Deposits from 16 surgically excised calcified valves (seven natural aortic and nine bioprosthetic porcine aortic valves) were examined by chemical analysis, FTIR, XRD, and SEM-EDS. The Ca/P molar ratio of the deposits from bioprosthetic valves (1.52+/-0.06) was significantly lower compared to that of the natural valves (1.83+/-0.03) (p=0.05, 1-way ANOVA). SEM-EDS examination of the two types of valve deposits revealed the coexistence of large (>20 microm) and medium (5-20 microm) plate-like crystals as well as microcrystalline (<5 microm) calcium phosphate mineral formations. The results confirmed the hypothesis that the mineral salt of calcified valves is a mixture of calcium phosphate phases such as dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP) and hydroxyapatite (HAP). DCPD and OCP are suggested to be precursor phases transformed to HAP by hydrolysis. The lower value of the Ca/P molar ratio found in the bioprostheses, in comparison with that corresponding in natural valves, was ascribed to the higher content in these deposits in precursor phases DCPD and OCP which were subsequently transformed into HAP. On the basis of chemical composition of the deposits and their morphology it is suggested that crystal growth proceeds in both types of valves by the same mechanism (hydrolysis of precursor phases to HAP) in spite of their differences in etiology, material, and possible initiation pathways.
Polyconvexity of a strain-energy function is a very important mathematical condition, especially in the context of a boundary-value problem. In the present paper, we propose an exponential polyconvex anisotropic strain-energy function. It is given by a series with an arbitrary number of terms and associated material constants. Each term of this series a priori satisfies the condition of the energy- and stress-free natural state so that no additional restrictions have to be imposed. Due to the exponential form, the proposed hyperelastic model is suitable for soft biological tissues. Thus, a good agreement with experimental data on different types of tissues is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.