Mitochondrion is one of the most important organelles controlling multiple diverse biological phenomena. Consequently, dysfunction in mitochondria leads to the initiation, development and progression of cancer, especially colon cancer. However,...
Objective: Cisplatin, the most common chemotherapeutic drug for the treatment of advanced stage cervical cancers has limitations in terms of drugs resistance observed in patients partly due to functional DNA damage repair (DDR) processes in the cell. Mediator of DNA damage checkpoint 1 (MDC1) is an important protein in the Ataxia telangiectasia mutated (ATM) mediated double stranded DNA break (DSB) repair pathway. In this regard, we investigated the effect of MDC1 change in expression on the cisplatin sensitivity in cervical cancer cells. Results: Through modulation of MDC1 expression in the cervical cancer cell lines; Hela, SiHa and Caski, we found that all the three cell lines silenced for MDC1 exhibited higher sensitivity to cisplatin treatment with inefficiency in accumulation of p γH2AX, Ser 139 foci and increased accumulation of pChk2 Thr 68 at the damaged chromatin followed by enhanced apoptosis. Further, we observed the increased p53 Ser 15 phosphorylation in the MDC1 depleted cells. Our studies suggest that MDC1 expression could be a key determinant in cervical cancer prognosis and its depletion in combination with cisplatin has the potential to be explored for the sensitisation of chemo-resistant cervical cancer cells.
Despite extensive studies and the great variety of existing anticancer agents, cancer treatment remains an aggravating and challenging problem. Therefore, the development of novel anticancer drugs with a better therapeutic profile and fewer side effects to combat this persistent disease is still necessary. In this study, we report a novel series of benzothiazole and chromone derivatives that were synthesized and evaluated for their anticancer activity as an inhibitor of ATR kinase, a master regulator of the DDR pathway. The cell viability of a set of 25 compounds was performed using MTT assay in HCT116 and HeLa cell lines, involving 72 h incubation of the compounds at a final concentration of 10 µM. Cells incubated with compounds 2c, 7h and 7l were found to show viability ≤50%, and were taken forward for dose–response studies. Among the tested compounds, three of them (2c, 7h and 7l) showed higher potency, with compound 7l exhibiting the best IC50 values in both the cell lines. Compounds 2c and 7l were found to be equally cytotoxic towards both the cell lines, namely, HCT116 and HeLa, while compound 7h showed better cytotoxicity towards HeLa cell line. For these three compounds, an immunoblot assay was carried out in order to analyze the inhibition of phosphorylation of Chk1 at Ser 317 in HeLa and HCT116 cells. Compound 7h showed inhibition of pChk1 at Ser 317 in HeLa cells at a concentration of 3.995 µM. Further analysis for Chk1 and pChk1 expression was carried out in Hela cells by treatment against all the three compounds at a range of concentrations of 2, 5 and 10 µM, wherein compound 7h showed Chk1 inhibition at 2 and 5 µM, while pChk1 expression was observed for compound 7l at a concentration of 5 µM. To support the results, the binding interactions of the compounds with the ATR kinase domain was studied through molecular docking, wherein compounds 2c, 7h and 7l showed binding interactions similar to those of Torin2, a known mTOR/ATR inhibitor. Further studies on this set of molecules is in progress for their specificity towards the ATR pathway.
Objective: Cisplatin, the most common chemotherapeutic drug for the treatment of advanced stage cervical cancers has limitations in terms of drugs resistance observed in patients partly due to functional DNA damage repair (DDR) processes in the cell. Mediator of DNA damage checkpoint1 (MDC1) is an important protein in the Ataxia telangiectasia mutated (ATM) mediated double stranded DNA break (DSB) repair pathway. In this regard, we investigated the effect of MDC1change in expression on the cisplatin sensitivity in cervical cancer cells.Results: Through modulation of MDC1 expression in the cervical cancer cell lines; Hela, SiHa and Caski, we found that all the three cell lines silenced for MDC1 exhibited higher sensitivity to cisplatin treatment with inefficiency in accumulation of p γH2AX, Ser 139 foci and increased accumulation of pChk2 Thr 68 at the damaged chromatin followed by enhanced apoptosis. Further, we observed the increased p53 Ser 15 phosphorylation in the MDC1 depleted cells. Our studies suggest that MDC1 expression could be a key determinant in cervical cancer prognosis and treatment and its depletion in combination with cisplatin has the potential to be explored for the sensitisation of chemo-resistant cervical cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.