The toxicity of ascorbate towards phage lambda and the phages T2-T7 has been investigated. At room temperature the T-odd and lambda bacteriophages are highly susceptible to ascorbate-induced damage, whereas the T-even phages are practically resistant. The toxicity of ascorbate is dependent on the presence of copper (or iron) and oxygen, although oxygen is not required in the presence of H,O,. Hydrogen peroxide is essential for the ascorbateinduced phage inactivation and the damage is prevented by catalase. At the concentrations used, most of the copper ions are bound to the phage particles. Chelating agents such as EDTA or histidine fully protect the phages, whereas salicylate only reduces the rate of phage inactivation. OH scavengers such as sucrose, formate, mannitol, terf-butyl alcohol or poly(ethy1ene glycol) have no protective effect.Experiments with DNA labeled phages indicate that both phage adsorption and DNA injection are impaired as a result of the exposure to ascorbate and copper. The failure to express the viral genetic information as a result of single and double-strand breaks in the DNA, probably also contribute to the loss of the plaque-forming ability of the phages.The results are interpreted in terms of a 'site-specific' Fenton mechanism according to which the binding of the transition metal ions to the biological target is a prerequisite for the production of damage. The bound metal ion is reduced either by q, ascorbate or other reductants and is subsequently reoxidized by H,O, yielding OH' radicals.This cyclic redox reaction of the metal generates OH' radicals which react with vital macromolecules with a high probability of causing 'multi-hit' damage. This 'site-specific' formation of OH' radicals, which takes place near the target molecules, accounts both for the high damaging efficiency and for the failure of OH' scavengers to protect against it.
The protective effect of cyclic stable nitroxide free radicals, having SOD-like activity, against oxidative damage was studied by using Escherichia coli xthA DNA repair-deficient mutant hypersensitive to H2O2. Oxidative damage induced by H2O2 was assayed by monitoring cell survival. The metal chelator 1,10-phenanthroline (OP), which readily intercalates into DNA, potentiated the H2O2-induced damage. The extent of in vivo DNA scission and degradation was studied and compared with the loss of cell viability. The extent of DNA breakage correlated with cell killing, supporting previous suggestions that DNA is the crucial cellular target of H2O2 cytotoxicity. The xthA cells were protected by catalase but not by superoxide dismutase (SOD). Both five- and six-membered ring nitroxides, having SOD-like activity, protected growing and resting cells from H2O2 toxicity, without lowering H2O2 concentration. To check whether nitroxides protect against O2.(-)-independent injury also, experiments were repeated under hypoxia. These nitroxides also protected hypoxic cells against H2O2, suggesting alternative modes of protection. Since nitroxides were found to reoxidize DNA-bound iron(II), the present results suggest that nitroxides protect by oxidizing reduced transition metals, thus interfering with the Fenton reaction.
The asorbic acid (AH-) auto-oxidation rates catalyzed by copper chelates of 1,10-phenanthroline (OP) or by iron chelates of bleomycin (BLM) are only slightly higher than the oxidation rates catalyzed by the metal ions. AH- oxidation in the presence of DNA is accompanied by degradation of the DNA. The rates of DNA scission by the metal chelates are markedly higher than the rates induced by the free metal ions. AH- oxidation is slowed down in the presence of DNA which forms ternary complexes with the chelates. The ternary complexes react slowly with AH- but induce DNA double strand breaks more efficiently than the free metal chelates. With OP, DNA is degraded by the reaction of the ternary complex, DNA-(OP)2Cu(I), with H2O2. AH- oxidation in the presence of DNA was biphasic, showing a marked rate increase after DNA was cleaved. We suggest that this sigmoidal pattern of the oxidation curves reflects the low initial oxidative activity of the ternary complexes, accelerating as DNA is degraded. Using O2- produced by pulse radiolysis as a reductant, we found that AH- oxidation with (OP)2Cu(II) induced more DNA double strand breaks per single strand break than bipyridine-copper. The site specific DNA damaging reactions indicated by these results are relevant to the mechanism of cytotoxic activities of bleomycin and similar antibiotics or cytotoxic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.