Multidrug resistance (MDR) operated by extrusion pumps such as P-glycoprotein and multidrug-resistance-associated-proteins, is a major reason for poor responses and failures in cancer chemotherapy. MDR modulators (chemosensitizers) were found among drugs approved for noncancer indications and their derivatives. Yet toxicity, adverse effects, and poor solubility at doses required for MDR reversal prevent their clinical application. Among newly designed chemosensitizers, some still suffer from toxicity and adverse effects, whereas others progressed to clinical trials. Diversities among tumors and among MDR pumps indicate a need for several clinically approved MDR modulators. Here we report for the first time that fluoxetine (Prozac), the well-known antidepressant, is a highly effective chemosensitizer. In vitro, fluoxetine enhanced (10-to 100-fold) cytotoxicity of anticancer drugs (doxorubicin, mitomycin C, vinblastine, and paclitaxel) in drug-resistant but not in drug-sensitive cells (5 and 3 lines, respectively). Fluoxetine increased drug accumulation within MDR-cells and inhibited drug efflux from those cells. In vivo, fluoxetine enhanced doxorubicin accumulation within tumors (12-fold) with unaltered pharmacokinetics. In four resistant mouse tumor models of both syngeneic and human xenograft, combination treatment of fluoxetine and doxorubicin generated substantial (P < 0.001) improvements in tumor responses and in survivals (2-to 3-fold). Moreover, fluoxetine reversed MDR at doses that are well below its human safety limits, free of the severe dose-related toxicity, adverse effects, and poor solubility that are obstacles to other chemosensitizers. This low-dose range, together with the findings reported here, indicate that fluoxetine has a high potential to join the arsenal of MDR reversal agents that may reach the clinic.
Adverse effects and gastrointestinal toxicity limit the use of Diclofenac, a frequently-used NSAID for treatments of rheumatic disorders and other chronic inflammatory diseases. Diclofenac-carrier formulations may alleviate adverse effects, increase efficacy and allow local administration. We report here our first step, biophysical and biochemical investigations of Diclofenac formulated in our previously-developed bioadhesive liposomes carrying hyaluronan (HA-BAL) or collagen (COL-BAL) on their surface. Both liposome types encapsulated Diclofenac at high efficiency, encapsulated doses reaching 13 mg drug/ml, and performed as sustained-release Diclofenac depots, half-lives of drug release (under fastest conditions) ranging from 1 to 3 days. Therapeutic activity of liposomal Diclofenac was evaluated in CT-26 cells that possess the CD44 hyaluronan receptors and integrins, and are a bench-mark for intracellular COX enzymes. HA-BAL and COL-BAL showed high cellular-affinity that was 40 fold and 6 fold over that of regular liposomes. Free, and liposome-encapsulated, Diclofenac showed similar activities. For example: 2-3nM Diclofenac given to intact cells generated COX-inhibition levels in the range of 60-70% for free drug and for encapsulated drug in COL-BAL and in HA-BAL. We propose these novel Diclofenac formulations possess key physicochemical and biochemical attributes for task performance, meriting the next step into in vivo studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.