The three types of dental MSCs from a single donor broadly possessed similar cellular properties and can differentiate into neuronal cells; however, pulp derived MSCs showed higher neurogenic potential than the follicle and papilla, suggesting their use in future stem cells therapy for the treatment of neurodegenerative disorders.
Easy isolation, lack of ethical issues, high proliferation, multi-lineage differentiation potential and immunomodulatory properties of umbilical cord (UC)-derived mesenchymal stem cells (MSCs) make them a valuable tool in stem cell research. Recently, Wharton’s jelly (WJ) was proven as the best MSC source among various compartments of UC. However, it is still unclear whether or not Wharton’s jelly-derived MSCs (WJMSCs) from different parts of the whole cord exhibit the same characteristics. There may be varied MSCs present in different parts of WJ throughout the length of the UC. For this purpose, using an explant attachment method, WJMSCs were isolated from three different parts of the UC, mainly present towards the placenta (mother part), the center of the whole cord (central part) and the part attached to the fetus (baby part). WJMSCs from all three parts were maintained in normal growth conditions (10% ADMEM) and analyzed for mesenchymal markers, pluripotent genes, proliferation rate and tri-lineage differentiation potential. All WJMSCs were highly proliferative, positively expressed CD90, CD105, CD73 and vimentin, while not expressing CD34, CD45, CD14, CD19 or HLA-DR, differentiated into adipocytes, osteocytes and chondrocytes and expressed pluripotency markers OCT-4, SOX-2 and NANOG at gene and protein levels. Furthermore, MSCs derived from all the parts were shown to have potency towards hepatocyte-like cell differentiation. Human bone marrow-derived MSCs were used as a positive control. Finally, we conclude that WJMSCs derived from all the parts are valuable sources and can be efficiently used in various fields of regenerative medicine.Electronic supplementary materialThe online version of this article (10.1007/s00441-017-2699-4) contains supplementary material, which is available to authorized users.
The facile nature of mesenchymal stem cell (MSC) acquisition in relatively large numbers has made Wharton's jelly (WJ) tissue an alternative source of MSCs for regenerative medicine. However, freezing of such tissue using dimethyl sulfoxide (DMSO) for future use impedes its clinical utility. In this study, we compared the effect of two different cryoprotectants (DMSO and cocktail solution) on post‐thaw cell behavior upon freezing of WJ tissue following two different freezing protocols (Conventional [−1°C/min] and programmed). The programmed method showed higher cell survival rate compared to conventional method of freezing. Further, cocktail solution showed better cryoprotection than DMSO. Post‐thaw growth characteristics and stem cell behavior of Wharton's jelly mesenchymal stem cells (WJMSCs) from WJ tissue cryopreserved with a cocktail solution in conjunction with programmed method (Prog‐Cock) were comparable with WJMSCs from fresh WJ tissue. They preserved their expression of surface markers, pluripotent factors, and successfully differentiated in vitro into osteocytes, adipocytes, chondrocytes, and hepatocytes. They also produced lesser annexin‐V‐positive cells compared to cells from WJ tissue stored using cocktail solution in conjunction with the conventional method (Conv‐Cock). Real‐time PCR and Western blot analysis of post‐thaw WJMSCs from Conv‐Cock group showed significantly increased expression of pro‐apoptotic factors (BAX, p53, and p21) and reduced expression of anti‐apoptotic factor (BCL2) compared to WJMSCs from the fresh and Prog‐Cock group. Therefore, we conclude that freezing of fresh WJ tissue using cocktail solution in conjunction with programmed freezing method allows for an efficient WJ tissue banking for future MSC‐based regenerative therapies. J. Cell. Biochem. 117: 2397–2412, 2016. © 2016 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.
Abstract. To study gene expression and to determine distinctive characteristics of embryos produced by different methods, normalisation of the gene(s) of interest against reference gene(s) has commonly been employed. Therefore, the present study aimed to assess which reference genes tend to express more stably in single porcine blastocysts produced in vivo (IVO) or by parthenogenetic activation (PA), in vitro fertilisation (IVF) and somatic cell nuclear transfer (SCNT) using different analysis programs, namely geNorm, Normfinder and Bestkeeper. Commonly used reference genes including 18S rRNA (18S), H2A histone family, member Z (H2A), hypoxanthine phosphoribosyltransferase1 (HPRT1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein 4 (RPL4), peptidylprolyl isomerase A (PPIA), beta actin (ACTB), succinate dehydrogenase complex, subunit A (SDHA) and hydroxymethylbilane synthase (HMBS2) were analysed; most of them resulted in significantly (P , 0.05) different cycle threshold (CT) values in porcine embryos except for SDHA and H2A. In evaluation of stable reference genes across in vivo and in vitro porcine blastocysts, three kinds of programs showed slightly different results; however, there were similar patterns about the rankings of more or less stability overall. In conclusion, SDHA and H2A were determined as the most appropriate reference genes for reliable normalisation in order to find the comparative gene expression in porcine blastocysts produced by different methods, whereas 18S was regarded as a less-stable reference gene. The present study has evaluated the stability of commonly used reference genes for accurate normalisation in porcine embryos to obtain reliable results.
Long-term expansion of mesenchymal stem cells (MSCs) under defined culture conditions is necessary in human stem cell therapy. However, it alters the characteristics of MSCs. Since quantitative real time polymerase chain reaction (qRT-PCR) is widely used as one of the key analytical methods for comparative characterization, the validation of reference genes (RGs) for normalization under each experimental condition is important to achieve reliable qRT-PCR results. Therefore, the most stable RGs for long-term expanded bone marrow- and umbilical cord blood-derived MSCs (BM-MSCs and UCB-MSCs) under defined culture conditions for up to 20 passages were evaluated. The more apparent alterations in characteristics such as differentiation capacity, proliferation, senescence, and the expression of RGs were noted in BM-MSCs than UCB-MSCs during long-term expansion. The RG validation programs (GeNorm and NormFinder) suggested that PPIA, HPRT1, and YWHAZ were suitable for normalization in qRT-PCR regardless of MSC types and long-term culture expansion, and the traditional RGs (ACTB and GAPDH) were less stable in long-term expanded MSCs. In addition, the use of these RGs for normalization of OCT4 expression in long-term expanded BM-MSCs showed that a less stable RG (GAPDH) showed contrasting data compared to other RGs. Therefore, the use of RGs such as PPIA, HPRT1, and YWHAZ for normalization in qRT-PCR experiments is highly recommended for long-term expanded MSCs to generate accurate and reliable data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.