Multiplicative speckle is a dominant type of noise that spoils the inherent features of the medical ultrasound (US) images. Apart from the speckle, impulse and Gaussian noises also appear in the US image due to the error encountered during the data transmission and transition of switching circuits and sensors. The noise not only deteriorates the visual quality of the US but also creates complications in the diagnosis. In this study, an adaptive comprehensive particle swarm optimisation‐based functional‐link neural network (ACPSO‐FLNN) filtre has been proposed and implemented in filtering noisy US images in different noise conditions. The proposed filtre is compared with some state‐of‐the‐art filtering techniques. Quantitative and qualitative measures such as training time, time complexity, convergence rate, and statistical test are included to study the performance of the proposed filtre. Furthermore, sensitivity, computational complexity, and order of the proposed filtre are also investigated. Friedman's test with 50 images is performed for statistical validation. The lower rank, that is, 6 and critical value of 21 × 10–4 of the proposed ACPSO‐FLNN filtre validates its dominance over other filtres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.