Interconnects are essential components of any electronic system. Their design, modeling and optimization are becoming complex and computationally expensive with the evolution of semiconductor technology as the devices of nanometer dimensions are being used. In high-speed applications, system level simulations are needed to ensure the robustness of a system in terms of signal and power quality. The simulations are becoming very expensive because of the large dimensional systems and their full-wave models. Machine learning techniques can be used as computationally efficient alternatives in the design cycle of the interconnects. This paper presents a review of the applications of machine learning techniques for design, optimization and analysis of interconnects in high-speed electronic systems. A holistic discussion is presented, including the basics of interconnects, their impact on the system performance, popular machine learning techniques and their applications related to the interconnects. The performance evaluation, optimization and variability analysis of interconnects are discussed in detail. Future scope and overlook that are presented in the literature are also discussed.
Power delivery networks are responsible for supplying clean power to the integrated circuits. Power supply noise plays a critical role in determining the performance of high-speed very large scale integration circuits and systems. In order to maintain power integrity in high-speed systems, decoupling capacitors are used to maintain low impedance of the PDN to eventually minimize power supply noise. However, the discrete optimization problem of selecting decoupling capacitors becomes computationally challenging in the systems having stringent PI requirements. In this work, a novel approach using the Social-Learning Particle Swarm Optimization (SLPSO) technique along with Adaptive Region Search (ARS) is used to tackle the Large-Scale Optimization Problem (LSOP) of decoupling capacitor placement. Region Search (RS) is used to guide particles, followed by ARS to dynamical search for the local best positions and for particles to move faster across the search space while maintaining the diversity of the population. To demonstrate the proposed approach, three practical case studies are presented. The obtained results are compared with current state-of-the-art approaches. The proposed approach drastically reduces computation time and is consistent with better results than other approaches. This consistency of improvement in CPU time in the results of all the examples validates the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.