Using low-temperature scanning tunneling spectroscopy, we map the local density of states of graphene quantum dots supported on Ir(111). Because of a band gap in the projected Ir band structure around the graphene K point, the electronic properties of the QDs are dominantly graphenelike. Indeed, we compare the results favorably with tight binding calculations on the honeycomb lattice based on parameters derived from density functional theory. We find that the interaction with the substrate near the edge of the island gradually opens a gap in the Dirac cone, which implies soft-wall confinement. Interestingly, this confinement results in highly symmetric wave functions. Further influences of the substrate are given by the known moiré potential and a 10% penetration of an Ir surface resonance into the graphene layer.
One of the intriguing characteristics of honeycomb lattices is the appearance of a pseudomagnetic field as a result of mechanical deformation. In the case of graphene, the Landau quantization resulting from this pseudomagnetic field has been measured using scanning tunneling microscopy. Here we show that a signature of the pseudomagnetic field is a local sublattice symmetry breaking observable as a redistribution of the local density of states. This can be interpreted as a polarization of graphene's pseudospin due to a strain induced pseudomagnetic field, in analogy to the alignment of a real spin in a magnetic field. We reveal this sublattice symmetry breaking by tunably straining graphene using the tip of a scanning tunneling microscope. The tip locally lifts the graphene membrane from a SiO support, as visible by an increased slope of the I(z) curves. The amount of lifting is consistent with molecular dynamics calculations, which reveal a deformed graphene area under the tip in the shape of a Gaussian. The pseudomagnetic field induced by the deformation becomes visible as a sublattice symmetry breaking which scales with the lifting height of the strained deformation and therefore with the pseudomagnetic field strength. Its magnitude is quantitatively reproduced by analytic and tight-binding models, revealing fields of 1000 T. These results might be the starting point for an effective THz valley filter, as a basic element of valleytronics.
Using high resolution spin-and angle-resolved photoemission spectroscopy, we map the electronic structure and spin texture of the surface states of the topological insulator Sb2Te3. In combination with density functional calculations (DFT), we directly show that Sb2Te3 exhibits a partially occupied, single spin-Dirac cone around the Fermi energy EF, which is topologically protected. DFT obtains a spin polarization of the occupied Dirac cone states of 80-90 %, which is in reasonable agreement with the experimental data after careful background subtraction. Furthermore, we observe a strongly spin-orbit split surface band at lower energy. This state is found at E − EF −0.8 eV at the Γ-point, disperses upwards, and disappears at about E − EF = −0.4 eV into two different bulk bands. Along the Γ − K direction, the band is located within a spin-orbit gap. According to an argument given by Pendry and Gurman in 1975, such a gap must contain a surface state, if it is located away from the high symmetry points of the Brillouin zone. Thus, the novel spin-split state is protected by symmetry, too.
The zigzag edges of graphene on Ir(111) are studied by ab initio simulations and low-temperature scanning tunneling spectroscopy, providing information about their structural, electronic, and magnetic properties. No edge state is found to exist, which is explained in terms of the interplay between a strong geometrical relaxation at the edge and a hybridization of the d orbitals of Ir atoms with the graphene orbitals at the edge.
Using the recently developed technique of microsoldering, we perform systematic transport studies of the influence of PMMA on graphene revealing a doping effect of up to ∆n = 3.8×10 12 cm −2 , but negligible influence on mobility and hysteresis. Moreover, we show that microsoldered graphene is free of contamination and exhibits very similar intrinsic rippling as found for lithographically contacted flakes. Finally, we demonstrate a current induced closing of the previously found phonon gap appearing in scanning tunneling spectroscopy, strongly non-linear features at higher bias probably caused by vibrations of the flake and a B-field induced double peak attributed to the 0.Landau level.1 arXiv:0912.2218v1 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.