Magnetic and magnetocaloric properties of the amorphous Fe92−xZr8Bx ribbons were studied in this work. Fully amorphous Fe89Zr8B3, Fe88Zr8B4, and Fe87Zr8B5 ribbons were fabricated. The Curie temperature (Tc), saturation magnetization (Ms), and the maximum entropy change with the variation of a magnetic field (−ΔSmpeak) of the glassy ribbons were significantly improved by the boron addition. The mechanism for the enhanced Tc and −ΔSmpeak by boron addition was studied.
The Curie temperature (Tc) and magnetic entropy change (−ΔSm), and their relationship to the alloy composition of Tb–Co metallic glasses, were studied systematically in this paper. It was found that, in contrast to the situation in amorphous Gd–Co ribbons, the dependence of Tc on Tb content and the maximum −ΔSm vs. Tc -2/3 plots in Tb–Co binary amorphous alloys do not follow a linear relationship, both of which are supposed to be closely related to the non-linear compositional dependence of Tb–Co interaction due to the existence of orbital momentum in Tb.
Elemental substitution is commonly used to improve the formability of metallic glasses and the properties of amorphous alloys over a wide compositional range. Therefore, it is essential to investigate the influence of element content change on the formability as well as magnetic and other properties. The purpose is to achieve tailorable properties in these alloys with enhanced glass forming ability. In this work, the glass-forming ability (GFA) and magnetic properties of the minor Mn-substituted Fe88Zr8B4 amorphous alloy were investigated. The addition of Mn improving the amorphous forming ability of the alloy. With the addition of Mn, the magnetic transition temperature, saturation magnetization and the magnetic entropy changes (−ΔSm) peaks decreased simultaneously, which is possibly caused by the antiferromagnetic coupling between Fe and Mn atoms. The dependence of −ΔSmpeak on Tc displays a positive correlation compared to the −ΔSmpeak- Tc−2/3 relationship proposed by Belo et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.