Quality assessment of in-the-wild videos is a challenging problem because of the absence of reference videos and shooting distortions. Knowledge of the human visual system can help establish methods for objective quality assessment of in-the-wild videos. In this work, we show two eminent effects of the human visual system, namely, content-dependency and temporal-memory effects, could be used for this purpose. We propose an objective no-reference video quality assessment method by integrating both effects into a deep neural network. For content-dependency, we extract features from a pre-trained image classification neural network for its inherent content-aware property. For temporal-memory effects, long-term dependencies, especially the temporal hysteresis, are integrated into the network with a gated recurrent unit and a subjectivelyinspired temporal pooling layer. To validate the performance of our method, experiments are conducted on three publicly available inthe-wild video quality assessment databases: KoNViD-1k, CVD2014, and LIVE-Qualcomm, respectively. Experimental results demonstrate that our proposed method outperforms five state-of-the-art methods by a large margin, specifically, 12.39%, 15.71%, 15.45%, and 18.09% overall performance improvements over the second-best method VBLIINDS, in terms of SROCC, KROCC, PLCC and RMSE, respectively. Moreover, the ablation study verifies the crucial role of both the content-aware features and the modeling of temporalmemory effects. The PyTorch implementation of our method is released at https://github.com/lidq92/VSFA. KEYWORDSvideo quality assessment; human visual system; content dependency; temporal-memory effects; in-the-wild videos ACM Reference Format:
Video quality assessment (VQA) is an important problem in computer vision. The videos in computer vision applications are usually captured in the wild. We focus on automatically assessing the quality of in-the-wild videos, which is a challenging problem due to the absence of reference videos, the complexity of distortions, and the diversity of video contents. Moreover, the video contents and distortions among existing datasets are quite different, which leads to poor performance of datadriven methods in the cross-dataset evaluation setting. To improve the performance of quality assessment models, we borrow intuitions from human perception, specifically, content dependency and temporal-memory effects of human visual system. To face the cross-dataset evaluation challenge, we explore a mixed datasets training strategy for training a single VQA model with multiple datasets. The proposed unified framework explicitly includes three stages: relative quality assessor, nonlinear mapping, and dataset-specific perceptual scale alignment, to jointly predict relative quality, perceptual quality, and subjective quality. Experiments are conducted on four publicly available datasets for VQA in the wild, i.e., LIVE-VQC, LIVE-Qualcomm, KoNViD-1k, and CVD2014. The experimental results verify the effectiveness of the mixed datasets training strategy and prove the superior performance of the unified model in comparison with the state-of-the-art models. For reproducible research, we make the PyTorch implementation of our method available at https://github.com/lidq92/MDTVSFA. Keywords Content dependency • In-the-wild videos • Mixed datasets training • Temporal-memory effect • Video quality assessment Communicated by Mei Chen.
Currently, most image quality assessment (IQA) models are supervised by the MAE or MSE loss with empirically slow convergence. It is well-known that normalization can facilitate fast convergence. Therefore, we explore normalization in the design of loss functions for IQA. Specifically, we first normalize the predicted quality scores and the corresponding subjective quality scores. Then, the loss is defined based on the norm of the differences between these normalized values. The resulting "Norm-in-Norm" loss encourages the IQA model to make linear predictions with respect to subjective quality scores. After training, the least squares regression is applied to determine the linear mapping from the predicted quality to the subjective quality. It is shown that the new loss is closely connected with two common IQA performance criteria (PLCC and RMSE). Through theoretical analysis, it is proved that the embedded normalization makes the gradients of the loss function more stable and more predictable, which is conducive to the faster convergence of the IQA model. Furthermore, to experimentally verify the effectiveness of the proposed loss, it is applied to solve a challenging problem: quality assessment of in-the-wild images. Experiments on two relevant datasets (KonIQ-10k and CLIVE) show that, compared to MAE or MSE loss, the new loss enables the IQA model to converge about 10 times faster and the final model achieves better performance. The proposed model also achieves state-ofthe-art prediction performance on this challenging problem. For reproducible scientific research, our code is publicly available at https://github.com/lidq92/LinearityIQA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.