When new information is relevant to prior knowledge or schema, it can be learned and remembered better. Rodent studies have suggested that the hippocampus and ventromedial prefrontal cortex (vmPFC) are important for processing schema‐related information. However, there are inconsistent findings from human studies on the involvement of the hippocampus and its interaction with the vmPFC in schema‐related memory retrieval. To address these issues, we used a human analog of the rodent spatial schema task to compare brain activity during immediate retrieval of paired associations (PAs) in schema‐consistent and schema‐inconsistent conditions. The results showed that the anterior hippocampus was more involved in retrieving PAs in the schema‐consistent condition than in the schema‐inconsistent condition. Connectivity analyses showed that the anterior hippocampus had stronger coupling with the vmPFC when the participants retrieved newly learned PAs successfully in the schema‐consistent (vs. schema‐inconsistent) condition, whereas the coupling of the posterior hippocampus with the vmPFC showed the opposite. Taken together, the results shed light on how the long axis of the hippocampus and vmPFC interact to serve memory retrieval via different networks that differ by schema condition.
When stimuli are learned by repetition, they are remembered better and retained for a longer time. However, current findings are lacking as to whether the medial temporal lobe (MTL) and cortical regions are involved in the learning effect when subjects retrieve associative memory, and whether their activations differentially change over time due to learning experience. To address these issues, we designed an fMRI experiment in which face-scene pairs were learned once (L1) or six times (L6). Subjects learned the pairs at four retention intervals, 30-min, 1-day, 1-week and 1-month, after which they finished an associative recognition task in the scanner. The results showed that compared to learning once, learning six times led to stronger activation in the hippocampus, but weaker activation in the perirhinal cortex (PRC) as well as anterior ventrolateral prefrontal cortex (vLPFC). In addition, the hippocampal activation was positively correlated with that of the parahippocampal place area (PPA) and negatively correlated with that of the vLPFC when the L6 group was compared to the L1 group. The hippocampal activation decreased over time after L1 but remained stable after L6. These results clarified how the hippocampus and cortical regions interacted to support associative memory after different learning experiences.
Schemas provide a scaffold onto which we can integrate new memories. Previous research has investigated the brain activity and connectivity underlying schema-related memory formation. However, how schemas are represented and reactivated in the brain, in order to enhance memory, remains unclear. To address this issue, we used an object–location spatial schema that was learned over multiple sessions, combined with similarity analyses of neural representations, to investigate the reactivation of schema representations of object–location memories when a new object–scene association is learned. In addition, we investigated how this reactivation affects subsequent memory performance under different strengths of schemas. We found that reactivation of a schema representation in the lateral occipital cortex (LOC) during object–scene encoding affected subsequent associative memory performance only in the schema-consistent condition and increased the functional connectivity between the LOC and the parahippocampal place area. Taken together, our findings provide new insight into how schema acts as a scaffold to support the integration of novel information into existing cortical networks and suggest a neural basis for schema-induced rapid cortical learning.
Monitoring the characteristic components in tipping paper is important to ensure the quality of cigarette products. This study establishes a method based on gas chromatography (GC) for determining cooling agents in tipping paper. The tipping paper was cut into pieces and extracted by ethanol under specific temperatures in a shaker. Then, the characteristic cooling agents of (-)-menthone, L-menthol, and (-)-menthyl lactate in extract were determined using GC coupled with a flame ionization detector (GC-FID). The limits of detection (LODs) and limits of quantification (LOQs) for the three cooling agents ranged from 0.15~0.32 μg/mL and 0.49~1.06 μg/mL, respectively. Results demonstrated a good linear relationship with high correlation coefficients for the three tested cooling agents. The extraction conditions of the cooling agents were optimized through a single-factor experiment as well as an orthogonal experiment. The standard addition recovery experiment showed that the average recoveries range from 81.23 to 100.62%, and the relative standard deviations (RSDs) of the measured values (n = 5) ranged from 0.34 to 1.64%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.