Facile, efficient, and robust immobilization of metal nanostructures on porous bioscaffolds is an interesting topic in materials chemistry and heterogeneous catalysis. This study reports a facile in situ method for the synthesis and immobilization of small silver nanoparticles (AgNPs) at room temperature on natural eggshell membrane (ESM), which presents interwoven fibrous structure and can be used as a unique protein-based biotemplate. Procyanidin (Pro), a typical plant polyphenol extracted from grape seeds and skins, was first grafted onto ESM fibers to serve as both reductant and stabilizer during the synthesis process. As a result, the AgNPs were facilely synthesized and robustly immobilized on the ESM fibers without additional chemical reductant or physical treatments. The morphology and microstructure of the as-prepared AgNPs@Pro-ESM composites were characterized by combined microscopy and spectroscopy technologies. The results indicate that small AgNPs with mean diameter of 2.46 nm were successfully prepared on the Pro-ESM biotemplate. The composites exhibited good catalytic activity toward the reduction of 4-nitrophenol (4-NP). More importantly, these composite catalysts can be easily recovered and reused for more than eight cycles because of their high stability.
The present studies deal with the intra‐specific effects of sea cucumber Apostichopus japonicus with unlimited food resources, especially the effects of stocking density on growth variation of the animal and energetic changes of small individuals under the stress of large individuals. The results showed that with the initial body weight of 5.12±0.09–6.11±0.26 g of sea cucumber among the densities of 5, 10, 20, 30, 40 and 50 ind./100 L, the density of 20 ind./100 L was the optimum stocking density because of its highest specific growth rate, crude protein content and crude lipid content in tissue. Individual growth variation of A. japonicus increased with the increase of stocking densities, whereas no significant differences in variation were found when the density was over 30 ind./100 L (P>0.05). The low‐weight individuals under the stress of heavy‐weight individuals exhibited obvious changes in energetics, such as lower ingestion rate, lower energy deposited as growth but higher respiration and excretion. The coefficient of variation in growth of the animals was over 70% due to the simultaneous action of aggression and maybe a factor of chemical mediator, and led to significant changes in the energetics of small‐sized individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.