The performance and the cost of electrocatalysts play the two most vital roles in the development and application of energy conversion technologies. Singleatom catalysts (SACs) are recently emerging as a new frontier in catalysis science. With maximum atom-utilization efficiency and unique properties, SACs exhibit great potential for enabling reasonable use of metal resources and achieving atomic economy. However, fabricating SACs and maintaining the metal centers as atomically dispersed sites under synthesis and catalysis conditions are challenging. Here, we highlight and summarize recent advances in wet-chemistry synthetic methods for SACs with special emphasis on how to achieve the stabilization of single metal atoms against migration and agglomeration. Moreover, we summarize and discuss the electrochemical applications of SACs with a focus on the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and CO 2 reduction reaction (CO 2 RR). At last, the current issues and the prospects for the development of this field are discussed.
The development of low-cost, efficient, and stable electrocatalysts for the oxygen reduction reaction (ORR) is desirable but remains a great challenge. Herein, we made a highly reactive and stable isolated single-atom Fe/N-doped porous carbon (ISA Fe/CN) catalyst with Fe loading up to 2.16 wt %. The catalyst showed excellent ORR performance with a half-wave potential (E ) of 0.900 V, which outperformed commercial Pt/C and most non-precious-metal catalysts reported to date. Besides exceptionally high kinetic current density (J ) of 37.83 mV cm at 0.85 V, it also had a good methanol tolerance and outstanding stability. Experiments demonstrated that maintaining the Fe as isolated atoms and incorporating nitrogen was essential to deliver the high performance. First principle calculations further attributed the high reactivity to the high efficiency of the single Fe atoms in transporting electrons to the adsorbed OH species.
The construction of highly active and stable non-noble-metal electrocatalysts for hydrogen and oxygen evolution reactions is a major challenge for overall water splitting. Herein, we report a novel hybrid nanostructure with CoP nanoparticles (NPs) embedded in a N-doped carbon nanotube hollow polyhedron (NCNHP) through a pyrolysis-oxidation-phosphidation strategy derived from core-shell ZIF-8@ZIF-67. Benefiting from the synergistic effects between highly active CoP NPs and NCNHP, the CoP/NCNHP hybrid exhibited outstanding bifunctional electrocatalytic performances. When the CoP/NCNHP was employed as both the anode and cathode for overall water splitting, a potential as low as 1.64 V was needed to achieve the current density of 10 mA·cm, and it still exhibited superior activity after continuously working for 36 h with nearly negligible decay in potential. Density functional theory calculations indicated that the electron transfer from NCNHP to CoP could increase the electronic states of the Co d-orbital around the Fermi level, which could increase the binding strength with H and therefore improve the electrocatalytic performance. The strong stability is attributed to high oxidation resistance of the CoP surface protected by the NCNHP.
We develop an N-coordination strategy to design a robust CO reduction reaction (CORR) electrocatalyst with atomically dispersed Co-N site anchored on polymer-derived hollow N-doped porous carbon spheres. Our catalyst exhibits high selectivity for CORR with CO Faradaic efficiency (FE) above 90% over a wide potential range from -0.57 to -0.88 V (the FE exceeded 99% at -0.73 and -0.79 V). The CO current density and FE remained nearly unchanged after electrolyzing 10 h, revealing remarkable stability. Experiments and density functional theory calculations demonstrate single-atom Co-N site is the dominating active center simultaneously for CO activation, the rapid formation of key intermediate COOH* as well as the desorption of CO.
Bimetallic nanocrystals (NCs) with core/shell, heterostructure, or inter-metallic and alloyed structures are emerging as more important materials than monometallic NCs. They are expected to display not only a combination of the properties associated with two distinct metals, but also new properties and capabilities due to a synergy between the two metals. More importantly, bimetallic NCs usually show composition-dependent surface structure and atomic segregation behavior, and therefore more interesting applied potentials in various fields including electronics, engineering, and catalysis. Compared with monometallic NCs, preparation of bimetallic NCs is much more complicated and difficult to be achieved. In recent years, researchers from many groups have made great efforts in this area. This review highlights the recent progress in the chemical synthesis of bimetallic NCs. The control over morphology, size, composition, and structure of bimetallic NCs as well as the exploration of their properties and applications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.