Malaria is one of the deadliest infectious diseases threatening half of the world population. With the deterioration of the parasiticidal effect of the current antimalarials, novel approaches such as screening of more specific inhibitors and targeted delivery of drugs have been under intensive research. Herein, we prepare hollow mesoporous ferrite nanoparticles (HMFNs) of 200 nm with ferromagnetic properties using a one-pot hydrothermal reaction. A magnetically targeted drug-delivery system coloaded with artemisinin in the inner magnetite shell and heparin on the outer mesoporous shell (HMFN@ART@HEP) is developed. Specific targeting of the magnetic nanoparticles to the parasite-infected erythrocytes is achieved by the attraction between the HMFNs and hemozoin (paramagnetic), a vital metabolite of plasmodium in the erythrocytic stage. With the hemozoin production reaching the maximum during the schizont period of the parasite, HMFN@ART@HEPs are adsorbed to the infected red blood cells (iRBCs), which not only interferes with the release of merozoites but also significantly enhances the inhibitory efficacy due to the increased local concentration of artemisinin. Subsequently, the heparin coated on the surface of the nanoparticles can efficiently interfere with the invasion of freshly released merozoites to new RBCs through the specific interaction between the parasite-derived ligands and heparin, which further increases the inhibitory effect on malaria. As a cluster of heparin, heparin-coated nanoparticles provide stronger blocking capability than free heparin, resulting from multivalent interactions with surface receptors on merozoite. Thus, we have developed a HMFN-based delivery system with considerable antimalarial efficacy, which is a promising platform for treatment against malaria.
Acoustic tweezers can control target movement through the momentum interaction between an acoustic wave and an object. This technology has advantages over optical tweezers for in-vivo cell manipulation due to its high tissue penetrability and strong acoustic radiation force. However, normal cells are difficult to acoustically manipulate because of their small size and the similarity between their acoustic impedance and that of the medium. In this study, we use the heterologous expression of gene clusters to generate genetically engineered bacteria that can produce numerous sub-micron gas vesicles in the bacterial cytoplasm. We show that the presence of the gas vesicles significantly enhances the acoustic sensitivity of the engineering bacteria, which can be manipulated by ultrasound. We find that by employing phased-array-based acoustic tweezers, the engineering bacteria can be trapped into clusters and manipulated in vitro and in vivo via electronically steered acoustic beams, enabling the counter flow or on-demand flow of these bacteria in the vasculature of live mice. Furthermore, we demonstrate that the aggregation efficiency of engineering bacteria in a tumour is improved by utilizing this technology. This study provides a platform for the in-vivo manipulation of live cells, which will promote the progress of cell-based biomedical applications.
Background The respiratory syncytial virus (RSV) is the main cause of bronchiolitis in infants and interferon (IFN) α is a commercial antiviral drug. The nebulization of IFN α1b could be a viable treatment method. In this study, the therapeutic effects and safety of IFN α1b delivery via nebulization in infant bronchiolitis were investigated in this multi-center prospective study. Methods and findings Bronchiolitis patients admitted to 22 hospitals who met the inclusion criteria were enrolled and randomly allocated to four groups: control, IFN Intramuscular Injection, IFN Nebulization 1 (1 μg/kg), and IFN Nebulization 2 (2 μg/kg) groups. All patients were observed for 7 days. The therapeutic effects and safety of different IFN delivery doses and delivery modes were evaluated. Coughing severity change, as scored by the researchers and parents, between days 1 and 3 was significantly different between the IFN Nebulization 2 and control
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.