Exosomes are small extracellular membrane vesicles important in intercellular communication, with their oncogenic cargo attributed to tumor progression and pre‐metastatic niche formation. To gain an insight into key differences in oncogenic composition of exosomes, human non‐malignant epithelial and pancreatic cancer cell models and purified and characterized resultant exosome populations are utilized. Proteomic analysis reveals the selective enrichment of known exosome markers and signaling proteins in comparison to parental cells. Importantly, valuable insights into oncogenic exosomes (362 unique proteins in comparison to non‐malignant exosomes) of key metastatic regulatory factors and signaling molecules fundamental to pancreatic cancer progression (KRAS, CD44, EGFR) are provided. It is reported that oncogenic exosomes contain factors known to regulate the pre‐metastatic niche (S100A4, F3, ITGβ5, ANXA1), clinically‐relevant proteins which correlate with poor prognosis (CLDN1, MUC1) as well as protein networks involved in various cancer hallmarks including proliferation (CLU, CAV1), invasion (PODXL, ITGA3), metastasis (LAMP1, ST14) and immune surveillance escape (B2M). The presence of these factors in oncogenic exosomes offers an understanding of select differences in exosome composition during tumorigenesis, potential components as prognostic and diagnostic biomarkers in pancreatic cancer, and highlights the role of exosomes in mediating crosstalk between tumor and stromal cells.
A new, bifunctional recombinant protein was expressed as the fusion product of human elastin‐like polypeptide (HELP) and the bilirubin‐binding protein UnaG. The engineered product displays both the HELP‐specific property of forming a functional hydrogel matrix and the UnaG‐specific capacity of emitting green fluorescence upon ligand binding. The new fusion protein has been proven to be effective at detecting bilirubin in complex environments with high background noise. A cell culture model of the stress response, consisting of bilirubin released in the cell culture medium, was set up to assess the bilirubin‐sensing properties of the functional matrix obtained by cross‐linking the HELP moiety. Our engineered protein allowed us to monitor cell induction by the release of bilirubin in the culture medium on a nanomolar scale. This study shows that elastin‐like protein fusion represents a versatile platform for the development of novel and commercially viable analytical and biosensing devices.
Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children, characterized by an abnormal proliferation of immature lymphoid cells. Thanks to risk-adapted combination chemotherapy treatments currently used, survival at 5 years has reached 90%. ALL is a heterogeneous disease from a genetic point of view: patients' lymphoblasts may harbor in fact several chromosomal alterations, some of which have prognostic and therapeutic value. Of particular importance is the translocation t(9;22)(q34;q11.2) that leads to the formation of the BCR-ABL1 fusion gene, encoding a constitutively active chimeric tyrosine kinase (TK): BCR-ABL1 that is present in ~3% of pediatric ALL patients with B-immunophenotype and is associated with a poor outcome. This type of ALL is potentially treatable with specific TK inhibitors, such as imatinib. Recent studies have demonstrated the existence of a subset of BCR-ABL1 like leukemias (~10-15% of Bimmunophenotype ALL), whose blast cells have a gene expression profile similar to that of BCR-ABL1 despite the absence of t(9;22)(q34;q11.2). The precise pathogenesis of BCR-ABL1 like ALL is still to be defined, but they are mainly characterized by the activation of constitutive signal transduction pathways due to chimeric TKs different from BCR-ABL1. BCR-ABL1 like ALL patients represent a group with unfavorable outcome and are not identified by current risk criteria. In this review, we will discuss the design of targeted therapy for patients with BCR-ABL1 like ALL, which could consider TK inhibitors, and discuss innovative approaches suitable to identify the presence of patient's specific chimeric TK fusion genes, such as targeted locus amplification or proteomic biosensors.
In this work we study the possibility to use self-assembled monolayers (SAMs) of thiols to protect the surface of nanoelectrodes ensembles (NEEs) from the undesired adsorption of biomolecules, in particular, proteins. Thioctic acid (TA) and 2-mercaptoethanesulfonic acid (MES) were chosen for this aim. The behaviour of SAM-modified NEEs was studied by cyclic voltammetry as a function of the solution pH using ferrocenecarboxylate as anionic redox probe (FcCOO-) and (ferrocenylmethyl) trimethylammonium (FA+) as cationic redox probe. It was observed that, when the SAM is negatively charged it repels the negative redox probes from the surface of the nanoelectrodes, while the voltammetry of FA+ remain unchanged. The possible protective role of the SAM was confirmed by studying the voltammetric signals recorded with NEEs dipped in a solution of a high adsorbable protein, namely casein, comparing signals recorded at bare NEEs vs. signals at SAM-modified NEEs, in different experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.