Impaired insulin-mediated muscle glucose uptake in vivo can be the direct result of reduced microvascular blood flow responses to insulin, and can result from small (two-fold) increases in dietary fat. Thus, microvascular insulin-resistance can occur independently to the development of myocyte insulin-resistance.
Insulin resistance plays a key role in the development of type 2 diabetes. Skeletal muscle is the major storage site for glucose following a meal and as such has a key role in maintenance of blood glucose concentrations. Insulin resistance is characterised by impaired insulin-mediated glucose disposal in skeletal muscle. Multiple mechanisms can contribute to development of muscle insulin resistance and our research has demonstrated an important role for loss of microvascular function within skeletal muscle. We have shown that insulin can enhance blood flow to the microvasculature in muscle thus improving the access of glucose and insulin to the myocytes to augment glucose disposal. Obesity, insulin resistance and ageing are all associated with impaired microvascular responses to insulin in skeletal muscle. Impairments in insulin-mediated microvascular perfusion in muscle can directly cause insulin resistance, and this event can occur early in the aetiology of this condition. Understanding the mechanisms involved in the loss of microvascular function in muscle has the potential to identify novel treatment strategies to prevent or delay progression of insulin resistance and type 2 diabetes.
RT improves OGC-stimulated muscle MBF and glycemic control concomitantly, suggesting that MBF plays a role in improved glycemic control from RT.
Epidemiological studies demonstrate robust correlations between green tea consumption and reduced risk of type 2 diabetes and its cardiovascular complications. However, underlying molecular, cellular, and physiological mechanisms remain incompletely understood. Health promoting actions of green tea are often attributed to epigallocatechin gallate (EGCG), the most abundant polyphenol in green tea. Insulin resistance and endothelial dysfunction play key roles in the pathogenesis of type 2 diabetes and its cardiovascular complications. Metabolic insulin resistance results from impaired insulin-mediated glucose disposal in skeletal muscle and adipose tissue, and blunted insulin-mediated suppression of hepatic glucose output that is often associated with endothelial/vascular dysfunction. This endothelial dysfunction is itself caused, in part, by impaired insulin signaling in vascular endothelium resulting in reduced insulin-stimulated production of NO in arteries, and arterioles that regulate nutritive capillaries. In this review, we discuss the considerable body of literature supporting insulin-mimetic actions of EGCG that oppose endothelial dysfunction and ameliorate metabolic insulin resistance in skeletal muscle and liver. We conclude that EGCG is a promising therapeutic to combat cardiovascular complications associated with the metabolic diseases characterized by reciprocal relationships between insulin resistance and endothelial dysfunction that include obesity, metabolic syndrome and type 2 diabetes. There is a strong rationale for well-powered randomized placebo controlled intervention trials to be carried out in insulin resistant and diabetic populations.
Aims/hypothesis High sodium (HS) effects on hypertension are well established. Recent evidence implicates a relationship between HS intake and insulin resistance, even in the absence of hypertension. The aim of the current study was to determine whether loss of the vascular actions of insulin may be the driving factor linking HS intake to insulin resistance. Methods Sprague Dawley rats were fed a control (0.31% wt/wt NaCl) or HS (8.00% wt/wt NaCl) diet for 4 weeks and subjected to euglycaemic-hyperinsulinaemic clamp (10 mU min) or constant-flow pump-perfused hindlimb studies following an overnight fast. A separate group of HS rats was given quinapril during the dietary intervention and subjected to euglycaemichyperinsulinaemic clamp as above. Results HS intake had no effect on body weight or fat mass or on fasting glucose, insulin, endothelin-1 or NEFA concentrations. However, HS impaired whole body and skeletal muscle glucose uptake, in addition to a loss of insulin-stimulated microvascular recruitment. These effects were present despite enhanced insulin signalling (Akt) in both liver and skeletal muscle. Constant-flow pump-perfused hindlimb experiments revealed normal insulin-stimulated myocyte glucose uptake in HS-fed rats. Quinapril treatment restored insulin-mediated microvascular recruitment and muscle glucose uptake in vivo.Conclusions/interpretation HS-induced insulin resistance is driven by impaired microvascular responsiveness to insulin, and is not due to metabolic or signalling defects within myocytes or liver. These results imply that reducing sodium intake may be important not only for management of hypertension but also for insulin resistance, and highlight the vasculature as a potential therapeutic target in the prevention of insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.