OBJECTIVEIngestion of a mixed meal recruits flow to muscle capillaries and increases total forearm blood flow in healthy young lean people. We examined whether these vascular responses are blunted by obesity.RESEARCH DESIGN AND METHODSWe fed eight middle-aged lean and eight obese overnight-fasted volunteers a liquid mixed meal (480 kcal). Plasma glucose and insulin were measured every 30 min, and brachial artery flow and muscle microvascular recruitment (contrast ultrasound) were assessed every 60 min over 2 h after the meal.RESULTSBy 30 min, plasma glucose rose in both the lean (5.1 ± 0.1 vs. 6.7 ± 0.4 mmol/l, P < 0.05) and the obese groups (5.4 ± 0.2 vs. 6.7 ± 0.4 mmol/l, P < 0.05). Plasma insulin rose (28 ± 4 vs. 241 ± 30 pmol/l, P < 0.05) by 30 min in the lean group and remained elevated for 2 h. The obese group had higher fasting plasma insulin levels (65 ± 8 pmol/l, P < 0.001) and a greater postmeal area under the insulin-time curve (P < 0.05). Brachial artery flow was increased at 120 min after the meal in the lean group (38 ± 6 vs. 83 ± 16 ml/min, P < 0.05) but not in the obese group. Muscle microvascular blood volume rose by 120 min in the lean group (14.4 ± 2.2 vs. 24.4 ± 4.2 units, P < 0.05) but not in the obese group.CONCLUSIONSA mixed meal recruits muscle microvasculature in lean subjects, and this effect is blunted by obesity. This impaired vascular recruitment lessens the endothelial surface available and may thereby impair postprandial glucose disposal.
Impaired insulin-mediated muscle glucose uptake in vivo can be the direct result of reduced microvascular blood flow responses to insulin, and can result from small (two-fold) increases in dietary fat. Thus, microvascular insulin-resistance can occur independently to the development of myocyte insulin-resistance.
Age-related skeletal muscle loss is thought to stem from suboptimal nutrition and resistance to anabolic stimuli. Impaired microcirculatory (nutritive) blood flow may contribute to anabolic resistance by reducing delivery of amino acids to skeletal muscle. In this study, we employed contrast-enhanced ultrasound, microdialysis sampling of skeletal muscle interstitium, and stable isotope methodology, to assess hemodynamic and metabolic responses of older individuals to endurance type (walking) exercise during controlled amino acid provision. We hypothesized that older individuals would exhibit reduced microcirculatory blood flow, interstitial amino acid concentrations, and amino acid transport when compared with younger controls. We report for the first time that aging induces anabolic resistance following endurance exercise, manifested as reduced (by ∼40%) efficiency of muscle protein synthesis. Despite lower (by ∼40-45%) microcirculatory flow in the older than in the younger participants, circulating and interstitial amino acid concentrations and phenylalanine transport into skeletal muscle were all equal or higher in older individuals than in the young, comprehensively refuting our hypothesis that amino acid availability limits postexercise anabolism in older individuals. Our data point to alternative mediators of age-related anabolic resistance and importantly suggest correction of these impairments may reduce requirements for, and increase the efficacy of, dietary protein in older individuals.
Insulin resistance plays a key role in the development of type 2 diabetes. Skeletal muscle is the major storage site for glucose following a meal and as such has a key role in maintenance of blood glucose concentrations. Insulin resistance is characterised by impaired insulin-mediated glucose disposal in skeletal muscle. Multiple mechanisms can contribute to development of muscle insulin resistance and our research has demonstrated an important role for loss of microvascular function within skeletal muscle. We have shown that insulin can enhance blood flow to the microvasculature in muscle thus improving the access of glucose and insulin to the myocytes to augment glucose disposal. Obesity, insulin resistance and ageing are all associated with impaired microvascular responses to insulin in skeletal muscle. Impairments in insulin-mediated microvascular perfusion in muscle can directly cause insulin resistance, and this event can occur early in the aetiology of this condition. Understanding the mechanisms involved in the loss of microvascular function in muscle has the potential to identify novel treatment strategies to prevent or delay progression of insulin resistance and type 2 diabetes.
Skeletal muscle microvascular (capillary) blood flow increases in the postprandial state or during insulin infusion due to dilation of precapillary arterioles to augment glucose disposal. This effect occurs independently of changes in large artery function. However, acute hyperglycemia impairs vascular function, causes insulin to vasoconstrict precapillary arterioles, and causes muscle insulin resistance in vivo. We hypothesized that acute hyperglycemia impairs postprandial muscle microvascular perfusion, without disrupting normal large artery hemodynamics, in healthy humans. Fifteen healthy people (5 F/10 M) underwent an oral glucose challenge (OGC, 50 g glucose) and a mixed-meal challenge (MMC) on two separate occasions (randomized, crossover design). At 1 h, both challenges produced a comparable increase (6-fold) in plasma insulin levels. However, the OGC produced a 1.5-fold higher increase in blood glucose compared with the MMC 1 h postingestion. Forearm muscle microvascular blood volume and flow (contrast-enhanced ultrasound) were increased during the MMC (1.3- and 1.9-fold from baseline, respectively, P < 0.05 for both) but decreased during the OGC (0.7- and 0.6-fold from baseline, respectively, P < 0.05 for both) despite a similar hyperinsulinemia. Both challenges stimulated brachial artery flow (ultrasound) and heart rate to a similar extent, as well as yielding comparable decreases in diastolic blood pressure and total vascular resistance. Systolic blood pressure and aortic stiffness remained unaltered by either challenge. Independently of large artery hemodynamics, hyperglycemia impairs muscle microvascular blood flow, potentially limiting glucose disposal into skeletal muscle. The OGC reduced microvascular blood flow in muscle peripherally and therefore may underestimate the importance of skeletal muscle in postprandial glucose disposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.