BackgroundThe objective of this study was to evaluate the accuracy of genomic predictions for rib eye area (REA), backfat thickness (BFT), and hot carcass weight (HCW) in Nellore beef cattle from Brazilian commercial herds using different prediction models.MethodsPhenotypic data from 1756 Nellore steers from ten commercial herds in Brazil were used. Animals were offspring of 294 sires and 1546 dams, reared on pasture, feedlot finished, and slaughtered at approximately 2 years of age. All animals were genotyped using a 777k Illumina Bovine HD SNP chip. Accuracy of genomic predictions of breeding values was evaluated by using a 5-fold cross-validation scheme and considering three models: Bayesian ridge regression (BRR), Bayes C (BC) and Bayesian Lasso (BL), and two types of response variables: traditional estimated breeding value (EBV), and phenotype adjusted for fixed effects (Y*).ResultsThe prediction accuracies achieved with the BRR model were equal to 0.25 (BFT), 0.33 (HCW) and 0.36 (REA) when EBV was used as response variable, and 0.21 (BFT), 0.37 (HCW) and 0.46 (REA) when using Y*. Results obtained with the BC and BL models were similar. Accuracies increased for traits with a higher heritability, and using Y* instead of EBV as response variable resulted in higher accuracy when heritability was higher.ConclusionsOur results indicate that the accuracy of genomic prediction of carcass traits in Nellore cattle is moderate to high. Prediction of genomic breeding values from adjusted phenotypes Y* was more accurate than from EBV, especially for highly heritable traits. The three models considered (BRR, BC and BL) led to similar predictive abilities and, thus, either one could be used to implement genomic prediction for carcass traits in Nellore cattle.
Carcass traits measured after slaughter are economically relevant traits in beef cattle. In general, the slaughter house payment system is based on HCW. Ribeye area (REA) is associated with the amount of the meat in the carcass, and a minimum of backfat thickness (BFT) is necessary to protect the carcass during cooling. The aim of this study was to identify potential genomic regions harboring candidate genes affecting those traits in Nellore cattle. The data set used in the present study consisted of 1,756 Nellore males with phenotype records. A subset of 1,604 animals had both genotypic and phenotypic information. Genotypes were generated based on a panel with 777,962 SNPs from the Illumina Bovine HD chip. The SNP effects were calculated based on the genomic breeding values obtained by using the single-step GBLUP approach and a genomic matrix re-weighting procedure. The proportion of the variance explained by moving windows of 100 consecutive SNPs was used to assess potential genomic regions harboring genes with major effects on each trait. The top 10 non-overlapping SNP-windows explained 8.72%, 11.38%, and 9.31% of the genetic variance for REA, BFT, and HCW, respectively. These windows are located on chromosomes 5, 7, 8, 10, 12, 20, and 29 for REA; chromosomes 6, 8, 10, 13, 16, 17, 18, and 24 for BFT; and chromosomes 4, 6, 7, 8, 14, 16, 17, and 21 for HCW. For REA, there were identified genes ( and ) involved in the cell cycle biological process which affects many aspects of animal growth and development. The and genes, both from AA transporter family, was also associated with REA. The AA transporters are essential for cell growth and proliferation, acting as carriers of tissue nutrient supplies. Various genes identified for BFT (, , , , , and ) have been associated with lipid metabolism in different mammal species. One of the most promising genes identified for HCW was the . There is evidence, in the literature, that this gene is located in putative QTL affecting carcass weight in beef cattle. Our results showed several genomic regions containing plausible candidate genes that may be associated with carcass traits in Nellore cattle. Besides contributing to a better understanding of the genetic control of carcass traits, the identified genes can also be helpful for further functional genomic studies.
This study was designed to estimate genetic parameters for the following traits of Brahman cattle in Brazil: age at first calving (AFC), calving interval (CI), rebreeding (REB), and stayability (STAY). For REB, the value 1 was assigned to heifers that rebred and calved after first calving and the value 0 was assigned to heifers that failed to rebreed after first calving. Likewise, for STAY, the value 1 was assigned to cows that calved at least 3 times by the time they reach 6 yr of age; otherwise, the value 0 was assigned. A bivariate analysis was used to estimate covariances components by using linear animal model for CI and AFC and threshold animal model for REB and STAY. The mean h(2) were 0.10, 0.02, 0.22, and 0.10 for AFC, CI, REB, and STAY, respectively. The genetic correlations were –0.13 between AFC and CI, –0.35 between AFC and REB, –0.57 between AFC and STAY, and 0.32 between REB and STAY, which reveal that cows that remain productive for longer periods in the herd also start breeding younger and present greater chances to REB. The selection of Brahman cattle for reproductive traits, such as AFC, CI, REB, and STAY, will render low magnitude and long-term responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.