<p>La evaluación de diferentes aceites vegetales para la obtención de biocombustibles se ha convertido en una estrategia global en la producción de biodiesel, con miras a la reducción de costos de producción, aumentar el rendimiento de la reacción, evitar el uso de materias primas consideradas como alimentos y disminuir la contaminación ambiental. En el presente trabajo se evaluó la obtención de biodiesel a partir de aceite usado de cocina, por medio de catálisis con hidróxido de sodio y potasio. Se evaluaron tres relaciones molares de metanol:aceite, 6:1, 9:1 y 12:1, dos catalizadores KOH y NaOH y dos porcentajes de catalizador 1% y 2%; se realizó un diseño factorial por duplicado. La temperatura se mantuvo en 60°C y el tiempo de reacción en 2 horas. Se determinó el contenido de metil ésteres, mono, di y triglicéridos mediante cromatografía de gases. Las mejores condiciones para NaOH y KOH como catalizadores se obtuvieron cuando el porcentaje de catalizador fue 1% y la relación molar alcohol:aceite fue 12:1. En estas condiciones se obtuvo una conversión del 64,1 %, un rendimiento de 98 % y un porcentaje de metil ésteres de 99,1% cuando el catalizador fue NaOH; con KOH la conversión fue 63,2%, el rendimiento fue 88% y el porcentaje de metil-ésteres fue 98,4%. Los resultados de este estudio muestran un alto rendimiento de la reacción usando aceite usado, por lo cual su implementación a nivel industrial dependerá de la evaluación económica.</p><p> </p>
Abstract:Hydrogen is expected to play an important role as a clean, reliable and renewable energy source. A key challenge is the production of hydrogen in an economically and environmentally sustainable way on an industrial scale. One promising method of hydrogen production is via biological processes using agricultural resources, where the hydrogen is found to be mixed with other gases, such as carbon dioxide. Thus, to separate hydrogen from the mixture, it is challenging to implement and evaluate a simple, low cost, reliable and efficient separation process. So, the aim of this work was to develop a polymeric membrane for hydrogen separation. The developed membranes were made of polysulfone via phase inversion by a controlled evaporation method with 5 wt % and 10 wt % of polysulfone resulting in thicknesses of 132 and 239 micrometers, respectively. Membrane characterization was performed using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and ASTM D882 tensile test. Performance was characterized using a 2 3 factorial experiment using the time lag method, comparing the results with those from gas chromatography (GC). As a result, developed membranes exhibited dense microstructures, low values of RMS roughness, and glass transition temperatures of approximately 191.75 °C and 190.43 °C for the 5 wt % and 10 wt % membranes, respectively. Performance results for the given membranes showed a hydrogen selectivity of 8.20 for an evaluated gas mixture 54% hydrogen and 46% carbon dioxide. According to selectivity achieved, H 2 separation from carbon dioxide is feasible with possibilities of scalability. These results are important for consolidating hydrogen production from biological processes.
Waste cooking oil (WCO) is an important feedstock for biofuel production due to its low cost and extensive availability, primarily by transesterification. A more recent approach to take advantage of this feedstock is through pyrolysis. In this study, WCO was collected from a fast food restaurant and then pyrolyzed, employing two different heating rates and four temperatures, at a fixed residence time. The composition of the products was determined by gas chromatography‐mass spectrometry. The best bio‐oil yield was 77.59 %, obtained at 700 °C and 10 °C min−1. The highest contents of octane, nonane, and decane were reached at 400 °C and 15 °C min−1. Therefore, WCO proves to be an important resource for obtaining biofuel or chemical solvents for the industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.