We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor–binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor–binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.
Plant steroid hormones, brassinosteroids (BRs), are perceived by a cell surface receptor kinase, BRI1, but how BR binding leads to regulation of gene expression in the nucleus is unknown. Here we describe the identification of BZR1 as a nuclear component of the BR signal transduction pathway. A dominant mutation bzr1-1D suppresses BR-deficient and BR-insensitive (bri1) phenotypes and enhances feedback inhibition of BR biosynthesis. BZR1 protein accumulates in the nucleus of elongating cells of dark-grown hypocotyls and is stabilized by BR signaling and the bzr1-1D mutation. Our results demonstrate that BZR1 is a positive regulator of the BR signaling pathway that mediates both downstream BR responses and feedback regulation of BR biosynthesis.
Brassinosteroids (BRs) signal through a plasma membrane-localized receptor kinase to regulate plant growth and development. We showed previously that a novel protein, BES1, accumulates in the nucleus in response to BRs, where it plays a role in BR-regulated gene expression; however, the mechanism by which BES1 regulates gene expression is unknown. In this study, we dissect BES1 subdomains and establish that BES1 is a transcription factor that binds to and activates BR target gene promoters both in vitro and in vivo. BES1 interacts with a basic helix-loop-helix protein, BIM1, to synergistically bind to E box (CANNTG) sequences present in many BR-induced promoters. Loss-of-function and gain-of-function mutants of BIM1 and its close family members display BR response phenotypes. Thus, BES1 defines a new class of plant-specific transcription factors that cooperate with transcription factors such as BIM1 to regulate BR-induced genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.