Synapsins are neuronal phosphoproteins crucial to regulating the processes required for normal neurotransmitter release. Synapsin II, in particular, has been implied as a candidate gene for schizophrenia. This study investigated synapsin II mRNA expression, using Real Time RT-PCR, in coded dorsolateral prefrontal cortical samples provided by the Stanley Foundation Neuropathology Consortium. Synapsin IIa was decreased in patients with schizophrenia when compared to both healthy subjects and patients with bipolar disorder, whereas the synapsin IIb was only significantly reduced in patients with schizophrenia when compared to healthy subjects, but not patients with bipolar disorder. Furthermore, lifetime antipsychotic drug use was positively associated with synapsin IIa expression in patients with schizophrenia. Results suggest that impairment of synaptic transmission by synapsin II reduction may contribute to dysregulated convergent molecular mechanisms which result in aberrant neural circuits that characterize schizophrenia, while implicating involvement of synapsin II in therapeutic mechanisms of currently prescribed antipsychotic drugs.
The present study was undertaken to investigate the mechanistic role of L-prolyl-L-leucyl-glycinamide (PLG) in modulating agonist binding to the dopamine D2L receptor. Competition and displacement assays indicate that the photoaffinity-labeling peptidomimetics of PLG, 3(R)-[(4(S)-(4-azido-2-hydroxy-benzoyl) amino-2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide hydrochloride (1a) and 3(R)-[(4(S)-(4-azido-2-hydroxy-5-iodo-benzoyl)amino-2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide hydrochloride (1b) bind at the same site as PLG. Autoradiography was used to establish the covalent binding of [125I]-1b to a 51 kDa protein in bovine striatal membranes. Western blot analysis with a dopamine D2L specific antibody, in combination with autoradiography, following a two dimensional gel separation, suggested this 51 kDa protein to be the dopamine D2L receptor. Further evidence for binding of 1b to dopamine D2L was provided by samples immunoprecipitated with the D2L antibody. These samples were analyzed by western blotting in parallel with autoradiography of [125I]-1b labeled protein. Both methods revealed bands at 51 kDa. Furthermore, PLG is shown to compete with 1b for binding to the dopamine D2L receptor as determined by autoradiography, as well as competition experiments with PLG and 1a. Collectively, these findings suggest the successful development of a photoaffinity labeling agent, compound 1b, that has been used to elucidate the interaction of PLG specifically with the dopamine D2L receptor.
Synapsins are a family of neuron-specific phosphoproteins involved in synaptic vesicle docking, synaptogenesis, and synaptic plasticity. Previous studies have reported an increase in synapsin II protein by dopaminergic agents in the striatum, medial prefrontal cortex, and nucleus accumbens. This study investigated the mechanistic pathway involved in synapsin II regulation by dopaminergic drugs using primary midbrain neurons to determine which of several transcription factors regulates synapsin II expression. Protein kinase A (PKA) participation in the signaling pathway was examined using selective PKA inhibitors, which reduced synapsin II expression in cell cultures while dopaminergic agents were unable to increase synapsin II in the presence of the PKA inhibitor. Transcription factor involvement was further investigated using separate cultures treated with antisense deoxyoligonucleotides (ADONs) against the following transcription factors: activating protein 2 alpha (AP-2alpha), early growth response factor 1 (EGR-1), or polyoma enhancer activator-3 (PEA-3). Selective knockdown of AP-2alpha by ADONs reduced synapsin II levels, whereas treatment with EGR-1 and PEA-3 ADONs did not affect synapsin II expression. Furthermore, dopaminergic agents were no longer able to influence synapsin II concentrations following AP-2alpha knockdown. Collectively, these results indicate that a cyclic adenosine-3',5'-monophosphate/PKA-dependent mechanism involving the AP-2alpha transcription factor is likely responsible for the increase in neuronal synapsin II following dopamine D1 receptor stimulation or dopamine D2 receptor inhibition.
The activity of G protein-coupled receptors (GPCRs) is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs) and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R)- [(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA), in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK) 1/2. Additionally, an in vitro cellular model was also used to study PAOPA’s effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA’s development into a novel drug for the improved treatment of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.