ObjectivesThe objective of this study was to conduct a systematic review to provide summarized evidence on the association between maternal exposure to particulate air pollution and birth weight (BW) and preterm birth (PTB) after taking into consideration the potential confounding effect of maternal smoking.MethodsWe systematically searched all published cohort and case-control studies examining BW and PTB association with particulate matter (PM, less than or equal to 2.5μm and 10.0 μm in diameter, PM2.5 and PM10, respectively) from PubMed and Web of Science, from January 1980 to April 2015. We extracted coefficients for continuous BW and odds ratio (OR) for PTB from each individual study, and meta-analysis was used to combine the coefficient and OR of individual studies. The methodological quality of individual study was assessed using a standard protocol proposed by Downs and Black. Forty-four studies met the inclusion criteria.ResultsIn random effects meta-analyses, BW as a continuous outcome was negativelyassociated with 10 μg/m3 increase in PM10 (-10.31 g; 95% confidence interval [CI], -13.57 to -3.13 g; I-squared=0%, p=0.947) and PM2.5 (-22.17 g; 95% CI, -37.93 to -6.41 g; I-squared=92.3%, p <0.001) exposure during entire pregnancy, adjusted for maternal smoking. A significantly increased risk of PTB per 10 μg/m3 increase in PM10 (OR, 1.23; 95% CI, 1.04 to 1.41; I-squared=0%, p =0.977) and PM2.5 (OR, 1.14; 95% CI, 1.06 to 1.22; I-squared=92.5%, p <0.001) exposure during entire pregnancy was observed. Effect size of change in BW per 10 μg/m3 increase in PM tended to report stronger associations after adjustment for maternal smoking.ConclusionsWhile this systematic review supports an adverse impact of maternal exposure to particulate air pollution on birth outcomes, variation in effects by exposure period and sources of heterogeneity between studies should be further explored.
PurposeTo investigate the association between long-term exposure to ambient air pollution and lung cancer incidence in Koreans.Materials and MethodsThis was a population-based case-control study covering 908 lung cancer patients and 908 controls selected from a random sample of people within each Korean province and matched according to age, sex, and smoking status. We developed land-use regression models to estimate annual residential exposure to particulate matter (PM10) and nitrogen dioxide (NO2) over a 20-year exposure period. Logistic regression was used to estimate odds ratios (ORs) and their corresponding 95% confidence intervals (CI).ResultsIncreases in lung cancer incidence (expressed as adjusted OR) were 1.09 (95% CI: 0.96−1.23) with a ten-unit increase in PM10 (µg/m3) and 1.10 (95% CI: 1.00−1.22) with a ten-unit increase in NO2 (ppb). Tendencies for stronger associations between air pollution and lung cancer incidence were noted among never smokers, among those with low fruit consumption, and among those with a higher education level. Air pollution was more strongly associated with squamous cell and small cell carcinomas than with adenocarcinoma of the lung.ConclusionThis study provides evidence that PM10 and NO2 contribute to lung cancer incidence in Korea.
TRAP appeared to be associated with an increased asthma among children with bronchiolitis, indicating the importance of modifying effects of bronchiolitis in asthma pathogenesis.
Little information is available on the prevalences of birth defects in Korea. The aims of this study were to estimate recent prevalences of selected birth defects and to analyze the prevalence trends of these defects during the period from 2008 to 2014. Prevalences were calculated for 69 major birth defects using health insurance claim data obtained from the Korea National Health Insurance Service (NHIS). Prevalence rate ratios were calculated using Poisson regression to analyze trends over the 7-year study period. The overall prevalence of a major birth defect was 446.3 per 10,000 births (95% CI: 444.0–448.6); 470.9 per 10,000 births (95% CI: 467.6–474.2) for males and 420.2 per 10,000 births (95% CI: 417–423.4) for females. The prevalence rates of the most common birth defects over the study period were; septal defect (138.2 per 10,000; 95% CI: 136.9–139.5), congenital hip dislocation (652 per 10,000; 95% CI: 64.1–65.9), and ventricular septal defect (62.62 per 10,000; 95% CI: 61.7–63.5). During the study period, a significant increase in the prevalence of a major birth defect was observed with a prevalence rate ratio (PRR) of 1.091. The strongest trend was observed for renal dysplasia, which had a PRR of 1.275 (95% CI: 1.211–1.343), and upward trends were observed for urogenital anomalies, such as, renal agenesis (PRR 1.102, 95% CI: 1.067–1.138), undescended testis (PRR 1.082, 95% CI: 1.072–1.093) and hypospadias (PRR 1.067, 95% CI: 1.044–1.090). This study shows an overall increase in the prevalences of birth defects, including hypospadias and undescended testis, which are known to be associated with endocrine factors. In the future, standardized birth defect registries should be established to enable these trends to be monitored.
This study was undertaken to investigate the associations between chronic exposure to particulate matter of medium aerodynamic diameter ≤10 or ≤2.5 µm (PM10 or PM2.5) and nitrogen dioxide (NO2) levels and lung function and to examine a possible change in these relationships by demographic and lifestyle factors. Chronic obstructive pulmonary disease (COPD) was defined using the Global Initiative for COPD criteria (forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) of <70%). Associations of lung function and COPD with PM10 or PM2.5 or NO2 were examined using linear and logistic regression analyses among 1264 Korean adults. The highest tertiles of PM2.5 (≥37.1 μg/m3) and NO2 (≥53.8 μg/m3) exposure were significantly associated with COPD (highest versus lowest tertile of PM2.5: adjusted odds ratio (OR) = 1.79, 95% CI: 1.02–3.13; highest versus lowest tertile of NO2: adjusted OR = 1.83, 95% CI: 1.04–3.21). A 10 μg/m3 increase in PM10 concentration was associated with a 1.85 L (95% CI –3.65 to –0.05) decrease in FEV1 and a 1.73 L (95% CI –3.35 to –0.12) decrease in FVC, with the strongest negative association among older people and those with less education. Reduced lung function was associated with PM2.5 exposure in subjects with no physical activity. This study provides evidence that exposure to ambient air pollution has adverse effects on lung function in adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.