Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita−1 d−1 (±SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge.
Background: Dietary mineral deficiencies are widespread globally causing a large disease burden. However, estimates of deficiency prevalence are often only available at national scales or for small population sub-groups with limited relevance for policy makers. Methods: This study combines food supply data from the Third Integrated Household Survey of Malawi with locally-generated food crop composition data to derive estimates of dietary mineral supplies and prevalence of inadequate intakes in Malawi. Results: We estimate that >50 % of households in Malawi are at risk of energy, calcium (Ca), selenium (Se) and/or zinc (Zn) deficiencies due to inadequate dietary supplies, but supplies of iron (Fe), copper (Cu) and magnesium (Mg) are adequate for >80 % of households. Adequacy of iodine (I) is contingent on the use of iodised salt with <1 % of households getting adequate I supply from food alone. Hidden hunger is likely to be widespread: among households with adequate energy supply, 30, 56 and 27 % had inadequate supplies of Ca, Se and Zn, respectively. Over 80 % of the poorest households had inadequate dietary supplies of Ca and Zn compared to <30 % of the wealthiest households; >80 % of rural households living on low-pH soils had inadequate dietary Se supplies compared to 55 % on calcareous soils; concurrent inadequate supplies of Ca, Se and Zn were observed in >80 % of the poorest rural households living in areas with non-calcareous soils. Prevalence of inadequate dietary supplies was greater in rural than urban households for all nutrients except Fe. Interventions to address dietary mineral deficiencies were assessed. For example, an agronomic biofortification strategy could reduce the prevalence of inadequate dietary Se supplies from 82 to 14 % of households living in areas with low-pH soils, including from 95 to 21 % for the poorest subset of those households. If currently-used fertiliser alone were enriched with Se then the prevalence of inadequate supplies would fall from 82 to 57 % with a cost per alleviated case of dietary Se deficiency of~US$ 0.36 year −1 .
Micronutrient deficiencies (MNDs) remain widespread among people in sub-Saharan Africa1–5, where access to sufficient food from plant and animal sources that is rich in micronutrients (vitamins and minerals) is limited due to socioeconomic and geographical reasons4–6. Here we report the micronutrient composition (calcium, iron, selenium and zinc) of staple cereal grains for most of the cereal production areas in Ethiopia and Malawi. We show that there is geospatial variation in the composition of micronutrients that is nutritionally important at subnational scales. Soil and environmental covariates of grain micronutrient concentrations included soil pH, soil organic matter, temperature, rainfall and topography, which were specific to micronutrient and crop type. For rural households consuming locally sourced food—including many smallholder farming communities—the location of residence can be the largest influencing factor in determining the dietary intake of micronutrients from cereals. Positive relationships between the concentration of selenium in grain and biomarkers of selenium dietary status occur in both countries. Surveillance of MNDs on the basis of biomarkers of status and dietary intakes from national- and regional-scale food-composition data1–7 could be improved using subnational data on the composition of grain micronutrients. Beyond dietary diversification, interventions to alleviate MNDs, such as food fortification8,9 and biofortification to increase the micronutrient concentrations in crops10,11, should account for geographical effects that can be larger in magnitude than intervention outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.