Edible oils form an essential part of the modern diet. These oils play a role as an energy source, and provide the diet with many beneficial micronutrients. Although a popular conception may be that fat should be avoided, certain edible oils as a dietary supplement may play an important role in the improvement of cardiovascular health. CVD has become one of the leading causes of death worldwide. Dietary supplementation with different oils may have beneficial effects on cardiovascular health. While olive oil and sunflower-seed oil are known to reduce serum cholesterol, fish oil has become well known for reducing potentially fatal cardiac arrhythmias. Recently, red palm oil research has shown beneficial effects on cardiac recovery from ischaemia-reperfusion injury. It is clear that dietary supplementation with edible oils may play a vital role in reducing the mortality rate due to heart disease. The specific benefits and disadvantages of these oils should, however, be explored in greater depth. The present review will attempt to identify the benefits and shortcomings of four popular edible oils, namely olive oil, sunflower-seed oil, fish oil and palm oil. Additionally the present review will aim to reveal potential areas of research which could further enhance our understanding of the effects of edible oils on cardiovascular health.
BackgroundA community health programme in Narok County in Kenya aimed to improve skilled birth assistance during childbirth through two demand side interventions. First, traditional birth attendants (TBAs) were co-opted into using their influence to promote use of skilled birth attendants (SBAs) at health facilities during delivery, and to accompany pregnant women to health facilities in return for a Ksh500 (Approximately USD5 as of August 2016) cash incentive for each pregnant mother they accompanied. Secondly, a free Motherpack consisting of a range of baby care items was given to each mother after delivering at a health facility. This paper estimates the impact of these two interventions on trends of facility deliveries over a 36-month period here.MethodsDependency or inferred causality was estimated between reorientation of TBAs and provision of Motherpacks with changes in facility delivery numbers. The outcome variable consists of monthly facility delivery data from 28 health facilities starting from January 2013 to December 2015 obtained from the District Health Information Systems 2 (DHIS2). Data were collected on the 13th, 14th or 15th of each month, resulting in a total of 35 collections, over 35 months. The intervention data consisted of the starting month for each of the two interventions at each of the 28 facilities. A negative binomial generalized linear model framework is applied to model the relationship as all variables were measured as count data and were overdispersed. All analyses were conducted using R software.FindingsDuring the 35 months considered, a total of 9095 health facility deliveries took place, a total of 408 TBAs were reached, and 2181 Motherpacks were distributed. The reorientation of TBAs was significant (p = 0.009), as was the provision of Motherpacks (p = .0001). The number of months that passed since the start of the intervention was also found to be significant (p = 0.033). The introduction of Motherpacks had the greatest effect on the outcome (0.2), followed by TBA intervention (0.15). Months since study start had a much lower effect (0.05).ConclusionCollaborating with TBAs and offering basic commodities important to mothers and babies (Motherpacks) immediately after delivery at health facilities, can improve the uptake of health facility delivery services in poor rural communities that maintain a strong bias for TBA assisted home delivery.Electronic supplementary materialThe online version of this article (doi:10.1186/s12884-017-1307-7) contains supplementary material, which is available to authorized users.
Background and AimsRecent studies have shown that dietary red palm oil (RPO) supplementation improves functional recovery following ischaemia/reperfusion in isolated hearts. The main aim of this study was to investigate the effects of dietary RPO supplementation on myocardial infarct size after ischaemia/reperfusion injury. The effects of dietary RPO supplementation on matrix metalloproteinase-2 (MMP2) activation and PKB/Akt phosphorylation were also investigated.Materials and methodsMale Wistar rats were divided into three groups and fed a standard rat chow diet (SRC), a SRC supplemented with RPO, or a SRC supplemented with sunflower oil (SFO), for a five week period, respectively. After the feeding period, hearts were excised and perfused on a Langendorff perfusion apparatus. Hearts were subjected to thirty minutes of normothermic global ischaemia and two hours of reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining. Coronary effluent was collected for the first ten minutes of reperfusion in order to measure MMP2 activity by gelatin zymography.ResultsDietary RPO-supplementation decreased myocardial infarct size significantly when compared to the SRC-group and the SFO-supplemented group (9.1 ± 1.0% versus 30.2 ± 3.9% and 27.1 ± 2.4% respectively). Both dietary RPO- and SFO-supplementation were able to decrease MMP2 activity when compared to the SRC fed group. PKB/Akt phosphorylation (Thr 308) was found to be significantly higher in the dietary RPO supplemented group when compared to the SFO supplemented group at 10 minutes into reperfusion. There was, however, no significant changes observed in ERK phosphorylation.ConclusionsDietary RPO-supplementation was found to be more effective than SFO-supplementation in reducing myocardial infarct size after ischaemia/reperfusion injury. Both dietary RPO and SFO were able to reduce MMP2 activity, which suggests that MMP2 activity does not play a major role in protection offered by RPO. PKB/Akt phosphorylation may, however, be involved in RPO mediated protection.
Background and AimsThe effect of red palm oil (RPO) supplementation on infarct size after ischaemia/reperfusion in a cholesterol enriched diet-induced hyperlipidemic animal model has not been reported. Previous studies reported results on the effect of RPO in a normal diet, whilst evidence of protection has been linked to improved functional recovery, prosurvival kinase, anti-apoptosis and NO-cGMP. Therefore, we aimed to investigate the effects of dietary RPO supplementation in a cholesterol-enriched diet-induced hyperlipidemic rat model and to investigate the involvement of matrix metalloproteinase 2 (MMP2) inhibition as a possible mechanism of protection.Materials and MethodsMale Wistar rats were fed either a standard rat chow diet (Norm) or a 2% cholesterol-enriched diet (Chol) for nine weeks. Additionally, two more groups received the same treatment, however, at the week 4, diet was supplemented with RPO for the last five weeks (Norm+RPO and Chol+RPO), respectively. After the feeding period hearts were isolated, perfused according to Langendorff and subjected to 30 minutes of normothermic global ischaemia followed by two hours of reperfusion. Infarct size was measured by 2,3,5-triphenyltetrazolium chloride staining at the end of reperfusion.ResultsCholesterol-enriched diet increased myocardial infarct size from 23.5 ± 3.0% to 37.2 ± 3.6% (p < 0.05) when compared to normal diet. RPO supplementation significantly reduced infarct size either in Norm+RPO or in Chol+RPO (to 9.2 ± 1.0% and 26.9 ± 3.0%), respectively. Infarct size in Chol+RPO was comparable to the Norm group. MMP2 activity before ischaemia was significantly reduced in the Chol+RPO group when compared to the Chol group. However, the MMP2 activity of the hearts of the RPO fed rats was significantly increased when compared to the normal diet group after ischaemia.ConclusionsFor the first time it was shown that dietary RPO supplementation attenuated the increased susceptibility of the hearts in cholesterol fed rats to ischaemia/reperfusion injury. This was shown by reduced infarct size. For the first time we also show that red palm oil supplementation altered pre-ischaemic levels of MMP-2, which may indicate that myocardial MMP2 may be implicated as a possible role player in RPO mediated protection against ischaemia/reperfusion injury in hearts of cholesterol supplemented rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.