Despite decades of research, the structure and assembly of the nuclear pore complex (NPC), which is composed of ∼30 nucleoporins (Nups), remain elusive. Here, we report the genome of the thermophilic fungus Chaetomium thermophilum (ct) and identify the complete repertoire of Nups therein. The thermophilic proteins show improved properties for structural and biochemical studies compared to their mesophilic counterparts, and purified ctNups enabled the reconstitution of the inner pore ring module that spans the width of the NPC from the anchoring membrane to the central transport channel. This module is composed of two large Nups, Nup192 and Nup170, which are flexibly bridged by short linear motifs made up of linker Nups, Nic96 and Nup53. This assembly illustrates how Nup interactions can generate structural plasticity within the NPC scaffold. Our findings therefore demonstrate the utility of the genome of a thermophilic eukaryote for studying complex molecular machines.
The 90S pre-ribosome is an early biogenesis intermediate formed during co-transcriptional ribosome formation, composed of ∼70 assembly factors and several small nucleolar RNAs (snoRNAs) that associate with nascent pre-rRNA. We report the cryo-EM structure of the Chaetomium thermophilum 90S pre-ribosome, revealing how a network of biogenesis factors including 19 β-propellers and large α-solenoid proteins engulfs the pre-rRNA. Within the 90S pre-ribosome, we identify the UTP-A, UTP-B, Mpp10-Imp3-Imp4, Bms1-Rcl1, and U3 snoRNP modules, which are organized around 5'-ETS and partially folded 18S rRNA. The U3 snoRNP is strategically positioned at the center of the 90S particle to perform its multiple tasks during pre-rRNA folding and processing. The architecture of the elusive 90S pre-ribosome gives unprecedented structural insight into the early steps of pre-rRNA maturation. Nascent rRNA that is co-transcriptionally folded and given a particular shape by encapsulation within a dedicated mold-like structure is reminiscent of how polypeptides use chaperone chambers for their protein folding.
Ribosome synthesis is catalyzed by ∼200 assembly factors, which facilitate efficient production of mature ribosomes. Here, we determined the cryo-EM structure of a Saccharomyces cerevisiae nucleoplasmic pre-60S particle containing the dynein-related 550-kDa Rea1 AAA(+) ATPase and the Rix1 subcomplex. This particle differs from its preceding state, the early Arx1 particle, by two massive structural rearrangements: an ∼180° rotation of the 5S ribonucleoprotein complex and the central protuberance (CP) rRNA helices, and the removal of the 'foot' structure from the 3' end of the 5.8S rRNA. Progression from the Arx1 to the Rix1 particle was blocked by mutational perturbation of the Rix1-Rea1 interaction but not by a dominant-lethal Rea1 AAA(+) ATPase-ring mutant. After remodeling, the Rix1 subcomplex and Rea1 become suitably positioned to sense correct structural maturation of the CP, which allows unidirectional progression toward mature ribosomes.
The rapidly evolving internal transcribed spacer 2 (ITS2) in the pre-ribosomal RNA is one of the most commonly applied phylogenetic markers at species and genus level. Yet, during ribosome biogenesis ITS2 is removed in all eukaryotes by a common, but still unknown, mechanism. Here we describe the existence of an RNA processome, assembled from four conserved subunits, Las1-Grc3-Rat1-Rai1, that carries all the necessary RNA processing enzymes to mediate coordinated ITS2 rRNA removal. Las1 is the long-sought-after endonuclease cleaving 27SB pre-rRNA at site C2 to yield a 5'-OH end at the 26S pre-rRNA and 2',3' cyclic phosphate at the 3' end of 7S pre-rRNA. Subsequently, polynucleotide kinase Grc3 catalyzes ATP-dependent 5'-OH phosphorylation of 26S pre-rRNA, which in turn enables Rat1-Rai1 exonuclease to generate 25S' pre-rRNA. ITS2 processing is reminiscent of tRNA splicing, but instead of subsequent tRNA ligation, the Las1 complex carries along an exonuclease tool to degrade the ITS2 rRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.