Tidal wetlands have been increasingly recognized as long-term carbon sinks in recent years. Work on carbon sequestration and decomposition processes in tidal wetlands focused so far mainly on effects of global-change factors such as sea-level rise and increasing temperatures. However, little is known about effects of land use, such as livestock grazing, on organic matter decomposition and ultimately carbon sequestration. The present work aims at understanding the mechanisms by which large herbivores can affect organic matter decomposition in tidal wetlands. This was achieved by studying both direct animal-microbe interactions and indirect animal-plant-microbe interactions in grazed and ungrazed areas of two long-term experimental field sites at the German North Sea coast. We assessed bacterial and fungal gene abundance using quantitative PCR, as well as the activity of microbial exo-enzymes by conducting fluorometric assays. We demonstrate that grazing can have a profound impact on the microbial community structure of tidal wetland soils, by consistently increasing the fungi-to-bacteria ratio by 38-42%, and therefore potentially exerts important control over carbon turnover and sequestration. The observed shift in the microbial community was primarily driven by organic matter source, with higher contributions of recalcitrant autochthonous (terrestrial) vs. easily degradable allochthonous (marine) sources in grazed areas favoring relative fungal abundance. We propose a novel and indirect form of animal-plant-microbe interaction: top-down control of aboveground vegetation structure determines the capacity of allochthonous organic matter trapping during flooding and thus the structure of the microbial community. Furthermore, our data provide the first evidence that grazing slows down microbial exo-enzyme activity and thus decomposition through changes in soil redox chemistry. Activities of enzymes involved in C cycling were reduced by 28-40%, while activities of enzymes involved in N cycling were not consistently affected by grazing. It remains unclear if this is a trampling-driven direct grazing effect, as hypothesized in earlier studies, or if the effect on redox chemistry is plant mediated and thus indirect. This study improves our process-level understanding of how grazing can affect the microbial ecology and biogeochemistry of semi-terrestrial ecosystems that may help explain and predict differences in C turnover and sequestration rates between grazed and ungrazed systems.
Tidal wetlands are effective carbon sinks, mitigating climate change through the long-term removal of atmospheric CO 2 . Studies along surface-elevation and thus flooding-frequency gradients in tidal wetlands are often used to understand the effects of accelerated sea-level rise on carbon sequestration, a process that is primarily determined by the balance of primary production and microbial decomposition. It
The cordgrass Spartina anglica C.E. Hubbard (Poaceae) is an invasive transformer in many salt marsh ecosystems worldwide. Relatively little is known about the capacity of Spartina to accelerate salt marsh succession and to protect salt marshes against sea level rise. We analyzed long-term changes in vegetation and elevation in mainland salt marshes of the European Wadden Sea in Schleswig-Holstein, Germany, to estimate the impact of non-native Spartina on the geomorphological resistance of salt marshes to sea level rise and on changes in species diversity. From 1989 to 2019, the Spartina-zone shifted and expanded upwards to elevations of the high marsh zone and Spartina increased in frequency in several salt marsh vegetation communities. At sites where Spartina dominated the vegetation already three decades ago, elevation and species diversity increased with a higher rate compared to sites lacking Spartina. The median change rates reached for elevation MHT +8.6 versus +1.5 mm per year, for species richness +3 versus $$\pm$$
±
0 species per three decades, and for evenness +0.04 versus −0.08 per three decades, regarding plots with versus without former Spartina dominance, respectively. Invasion of salt marshes by Spartina and its continued, long-term presence were associated with increased elevation and species diversity in the face of sea level rise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.