SummaryInfections caused by antibiotic-resistant luminescent Vibrios can cause dramatic losses in aquaculture. In this study, the short-chain fatty acid b-hydroxybutyrate and its polymer poly-bhydroxybutyrate were investigated as possible new biocontrol agents. b-Hydroxybutyrate was shown to completely inhibit the growth of pathogenic Vibrio campbelli at 100 mM. Moreover, the addition of 100 mM of this fatty acid to the culture water of Artemia nauplii infected with the V. campbelli strain significantly increased the survival of the nauplii. As Artemia is a non-selective and particle filter feeder, we also investigated whether poly-b-hydroxybutyrate particles could be used to protect Artemia from the pathogenic V. campbellii. The addition of 100 mg l -1 poly-b-hydroxybutyrate or more to the Artemia culture water offered a preventive and curative protection from the pathogen as a significantly enhanced survival was noticed. If added as a preventive treatment, a complete protection of infected nauplii (no significant mortality compared with uninfected nauplii) was observed at 1000 mg l -1 poly-bhydroxybutyrate. Our data indicate that the use of poly-b-hydroxybutyrate might constitute an ecologically and economically sustainable alternative strategy to fight infections in aquaculture.
A poly-beta-hydroxybutyrate (PHB)-accumulating enrichment culture was obtained using activated sludge from a polyphosphate-accumulating reactor as inoculum. PHB accumulated by the enrichment culture significantly enhanced the survival of Artemia nauplii, infected with the virulent pathogen Vibrio campbellii LMG 21363. A strain was isolated from the enrichment culture, based on its ability to accumulate PHB, and 16S rRNA gene sequencing of the isolate revealed 99% sequence similarity to Brachymonas denitrificans AS-P1. The isolate, named PHB2, showed good PHB-accumulating activity (up to 32% of the cell dry weight). PHB accumulated by isolate PHB2 was able to protect Artemia completely from the V. campbellii strain. Our data indicate that PHB-accumulating bacteria, such as B. denitrificans PHB2, could be used as an an effective and economically interesting alternative strategy to control infections in aquaculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.