Many low-molecular-weight peptides of microbial origin are synthesized nonribosomally on large multifunctional proteins, termed peptide synthetases. These enzymes contain repeated building blocks in which several defined domains catalyze specific reactions of peptide synthesis. The order of these domains within the enzyme determines the sequence and structure of the peptide product.
The genes encoding the bacitracin synthetases BA1, BA2 and BA3 are organized in an operon, the structure of which reflects the modular architecture expected of peptide synthetases. In addition, a putative thiazoline ring formation domain was identified in the BA1 gene.
Phosphopantetheinyl-dependent carrier proteins are part of fatty-acid synthases (primary metabolism), polyketide synthases, and non-ribosomal peptide synthetases (secondary metabolism). For these proteins to become functionally active, they need to be primed with the 4-phosphopantetheine moiety of coenzyme A by a dedicated phosphopantetheine transferase (PPTase). Most organisms that employ more than one phosphopantetheinyl-dependent pathway also have more than one PPTase. Typically, one of these PPTases is optimized for the modification of carrier proteins of primary metabolism and rejects those of secondary metabolism (AcpS-type PPTases), whereas the other, Sfp-type PPTase, efficiently modifies carrier proteins involved in secondary metabolism. We present here a new type of PPTase, the carrier protein synthase of Pseudomonas aeruginosa, an organism that harbors merely one PPTase, namely PcpS. Gene deletion experiments clearly show that PcpS is essential for growth of P. aeruginosa, and biochemical data indicate its association with both fatty acid synthesis and siderophore metabolism. At first sight, PcpS is a PPTase of the monomeric Sfp-type and was consequently expected to have catalytic properties typical for this type of enzyme. However, in vitro characterization of PcpS with natural protein partners and non-cognate substrates revealed that its catalytic properties differ significantly from those of Sfp. Thus, the situation in P. aeruginosa is not simply the result of the loss of an AcpS-type PPTase. PcpS exhibits high catalytic efficiency with the carrier protein of fatty acid synthesis and shows a reduced although significant conversion rate of the carrier proteins of non-ribosomal peptide synthetases from their apo to holo form. This association with enzymes of primary and secondary metabolism indicates that PcpS belongs to a new sub-class of PPTases. 4Ј-Phosphopantetheine (Ppant)1 -dependent carrier proteins (CP) are the central entity in fatty-acid synthases (FAS), polyketide synthases (PKS), and non-ribosomal peptide synthetases (NRPSs) (1, 2). The superfamily of CP includes the acidic acyl and aryl carrier proteins and the neutral peptidyl carrier proteins (PCPs). They can be part of a larger polypeptide chain or exist as distinct proteins but always fulfill the same job; during the multistep assembly of the product, the reaction intermediates of the growing acyl or polypeptide chain remain covalently tethered to the Ppant cofactor moiety of these proteins. This moiety is about 20 Å in length and enables the bound intermediates to move between the reaction centers of multifunctional proteins. The thioester linkage that is used to bind the intermediates and final product is energy-rich, which facilitates cleavage after the final step of the assembly. After ribosomal synthesis, however, the carrier protein exists only in the inactive apo form. The Ppant moiety is post-translationally transferred from coenzyme A to a conserved serine residue of the CP in a Mg 2ϩ -dependent reaction by a dedicated phosph...
Bacitracin is a peptide antibiotic produced by several Bacillus licheniformis strains that is most active against other Gram‐positive microorganisms, but not against the producer strain itself. Recently, heterologous expression of the bacitracin resistance mediating BcrABC transporter in Bacillus subtilis and Escherichia coli was described. In this study we could determine that the transporter encoding bcrABC genes are localized about 3 kb downstream of the 44‐kb bacitracin biosynthetic operon bacABC. Between the bac operon and the bcrABC genes two orfs, designated bacR and bacS, were identified. They code for proteins with high homology to regulator and sensor proteins of two‐component systems. A disruption mutant of the bacRS genes was constructed. While the mutant displayed no effects on the bacitracin production it exhibited highly increased bacitracin sensitivity compared to the wild‐type strain. Western blot analysis of the expression of BcrA, the ATP‐binding cassette of the transporter, showed in the wild‐type a moderate BcrA induction in late stationary cells that accumulate bacitracin, whereas in the bacRS mutant cells the BcrA expression was constitutive. A comparison of bacitracin stressed and nonstressed wild‐type cells in Western blot analysis revealed increasing amounts of BcrA and a decrease in BacR in the stressed cells. From these findings we infer that BacR acts as a negative regulator for controlling the expression of the bcrABC transporter genes.
Lichenysins are surface-active lipopeptides with antibiotic properties produced nonribosomally by several strains of Bacillus licheniformis. Here, we report the cloning and sequencing of an entire 26.6-kb lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Three large open reading frames coding for peptide synthetases, designated licA, licB(three modules each), and licC (one module), could be detected, followed by a gene, licTE, coding for a thioesterase-like protein. The domain structure of the seven identified modules, which resembles that of the surfactin synthetases SrfA-A to -C, showed two epimerization domains attached to the third and sixth modules. The substrate specificity of the first, fifth, and seventh recombinant adenylation domains of LicA to -C (cloned and expressed in Escherichia coli) was determined to be Gln, Asp, and Ile (with minor Val and Leu substitutions), respectively. Therefore, we suppose that the identified biosynthesis operon is responsible for the production of a lichenysin variant with the primary amino acid sequencel-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile, with minor Leu and Val substitutions at the seventh position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.