Incorporation of nonproteinogenic amino acids in small polypeptides synthesized by nonribosomal peptide synthetases (NRPS) significantly contributes to their biological activity. In these peptides, conversion of L-amino acids to the corresponding D-isomer is catalyzed by specialized NRPS modules that utilize an epimerization (E) domain. To understand the basis for the specific interaction of E domains with PCP domains (peptidyl carrier proteins, also described as T domains) and to investigate their substrate tolerance, we constructed a set of eight fusion proteins. The gene fragments encoding E and PCP-E domains of TycA (A-PCP-E), the one module tyrocidine synthetase A, were fused to different gene fragments encoding A and A-PCP domains, resulting in A/PCP-E and A-PCP/E types of fusion proteins (slash indicates site of fusion). We were able to show that the E domain of TycA, usually epimerizing Phe, does also accept the alternate substrates Trp, Ile, and Val, although with reduced efficiency. Interestingly, however, an epimerization activity was only observed in the case of fusion proteins where the PCP domain originates from modules containing an E domain. Sequence comparison revealed that such PCPs possess significant differences in the signature Ppant binding motif (CoreT: [GGDSI]), when compared to those carrier proteins, originating from ordinary C-A-PCP elongation modules (CoreT: [GGHSL]). By means of mutational analysis, we could show that epimerization activity is influenced by the nature of amino acid residues in proximity to the cofactor Ppant binding site. The aspartate residue in front of the invariant serine (Ppant binding site) especially seems to play an important role for the proper interaction between PCP and the E domain, as well as the presentation of the aminoacyl-S-Ppant substrate in the course of substrate epimerization. In conclusion, specialized PCP domains are needed for a productive interaction with E domains when constructing hybrid enzymes.
Several new aspects concerning the tolerance of NRPSs to domain swaps can be deduced. By choosing the fusion site in the border region of adenylation and PCP domains we showed that the PCP domain exhibits no general substrate selectivity. There was no suggestion that selectivity of the condensation reaction was biased towards the donor amino acid, whereas at the acceptor position there was a size-determined selection. In addition, we demonstrated that a native elongation module can be converted to an initiation module for peptide-bond formation. These results represent the first example of rational de novo synthesis of small peptides on engineered NRPSs.
Genetic engineering has been applied to reprogramme non-ribosomal peptide synthetases (NRPSs) to produce novel antibiotics, but little is known about what determines the efficiency of production. We explored module exchanges at nucleotide sequences encoding interpeptide linkers in dptD, a gene encoding a di-modular NRPS subunit that incorporates 3-methylglutamic acid (3mGlu 12 ) and kynurenine (Kyn 13 ) into daptomycin. Mutations causing amino acid substitutions, deletions or insertions in the inter-module linker had no negative effects on lipopeptide yields. Hybrid DptD subunits were generated by fusing the 3mGlu 12 module to terminal modules from calcium-dependent antibiotic (CDA) or A54145 NRPSs, and recombinants produced daptomycin analogues with Trp 13 or Ile 13 at high efficiencies. A recombinant expressing DptD with a hybrid Kyn 13 module containing a di-domain from a D-Asn module caused the production of a new daptomycin analogue containing Asn 13 .
Lichenysins are surface-active lipopeptides with antibiotic properties produced nonribosomally by several strains of Bacillus licheniformis. Here, we report the cloning and sequencing of an entire 26.6-kb lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Three large open reading frames coding for peptide synthetases, designated licA, licB(three modules each), and licC (one module), could be detected, followed by a gene, licTE, coding for a thioesterase-like protein. The domain structure of the seven identified modules, which resembles that of the surfactin synthetases SrfA-A to -C, showed two epimerization domains attached to the third and sixth modules. The substrate specificity of the first, fifth, and seventh recombinant adenylation domains of LicA to -C (cloned and expressed in Escherichia coli) was determined to be Gln, Asp, and Ile (with minor Val and Leu substitutions), respectively. Therefore, we suppose that the identified biosynthesis operon is responsible for the production of a lichenysin variant with the primary amino acid sequencel-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile, with minor Leu and Val substitutions at the seventh position.
Nonribosomal peptides are processed on multifunctional enzymes called nonribosomal peptide synthetases (NRPSs), whose modular multidomain arrangement allowed the rational design of new peptide products. However, the lack of natural competence and efficient transformation methods for most of nonribosomal peptide producer strains prevented the in vivo manipulation of these biosynthetic gene clusters. In this study, we present methods for the construction of a genetically engineered Bacillus subtilis surrogate host for the integration and heterologous expression of foreign NRPS genes. In the B. subtilis surrogate host, we deleted the resident 26-kilobase srfA gene cluster encoding the surfactin synthetases and subsequently used the same chromosomal location for integration of the entire 49-kilobase bacitracin biosynthetic gene cluster from Bacillus licheniformis by a stepwise homologous recombination method. Synthesis of the branched cyclic peptide antibiotic bacitracin in the engineered B. subtilis strain was achieved at high level, indicating a functional production and proper posttranslational modification of the bacitracin synthetases BacABC, as well as the expression of the associated bacitracin self-resistance genes. This engineered and genetically amenable B. subtilis strain will facilitate the rational design of new bacitracin derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.