We consider a Lévy driven continuous time moving average process X sampled at random times which follow a renewal structure independent of X. Asymptotic normality of the sample mean, the sample autocovariance, and the sample autocorrelation is established under certain conditions on the kernel and the random times. We compare our results to a classical non-random equidistant sampling method and give an application to parameter estimation of the Lévy driven Ornstein-Uhlenbeck process.Mathematics subject classification: 60F05, 60G10, 62D05.
Let X be a continuous-time strongly mixing or weakly dependent process and let T be a renewal process independent of X. We show general conditions under which the sampled process
$(X_{T_i},T_i-T_{i-1})^{\top}$
is strongly mixing or weakly dependent. Moreover, we explicitly compute the strong mixing or weak dependence coefficients of the renewal sampled process and show that exponential or power decay of the coefficients of X is preserved (at least asymptotically). Our results imply that essentially all central limit theorems available in the literature for strongly mixing or weakly dependent processes can be applied when renewal sampled observations of the process X are at our disposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.