The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.
The spread of SARS-CoV-2 over the entire world is more commonly known as COVID-19. COVID-19 has impacted society in every aspect of routine life. SARS-CoV-2 infection is often misdiagnosed as influenza or seasonal upper respiratory tract viral infections. General diagnostic tools can detect the viral antigen or isotypes of antibodies. However, inter- and intraindividual variations in antibody levels can cause false negatives in antibody immunoassays. On the contrary, the false-positive test results can also occur due to either cross-reactivity of the viral antigens or some other patient-related autoimmune factors. There is need for a cogent diagnostic tool with more specificity, selectivity, and reliability. Here, we have described the potential of convalescent serum-derived exosome as a diagnostic tool for the detection of SARS-CoV-2, even in asymptomatic patients, which is a limitation for currently practiced diagnostic tests throughout the globe. In addition, its potential as a vehicle for messenger RNA (mRNA) delivery is also emphasized.
Accurate identification at an early stage of infection is critical for effective care of any infectious disease. The “coronavirus disease 2019 (COVID-19)” outbreak, caused by the virus “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, corresponds to the current and global pandemic, characterized by several developing variants, many of which are classified as variants of concern (VOCs) by the “World Health Organization (WHO, Geneva, Switzerland)”. The primary diagnosis of infection is made using either the molecular technique of RT-PCR, which detects parts of the viral genome’s RNA, or immunodiagnostic procedures, which identify viral proteins or antibodies generated by the host. As the demand for the RT-PCR test grew fast, several inexperienced producers joined the market with innovative kits, and an increasing number of laboratories joined the diagnostic field, rendering the test results increasingly prone to mistakes. It is difficult to determine how the outcomes of one unnoticed result could influence decisions about patient quarantine and social isolation, particularly when the patients themselves are health care providers. The development of point-of-care testing helps in the rapid in-field diagnosis of the disease, and such testing can also be used as a bedside monitor for mapping the progression of the disease in critical patients. In this review, we have provided the readers with available molecular diagnostic techniques and their pitfalls in detecting emerging VOCs of SARS-CoV-2, and lastly, we have discussed AI-ML- and nanotechnology-based smart diagnostic techniques for SARS-CoV-2 detection.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.