In this study, we had developed Naringenin-loaded liquid crystalline nanoparticles (LCNs) and investigated the anti-inflammatory and anticancer activities of Naringenin-LCNs against human airway epithelium-derived basal cells (BCi-NS1.1) and human lung epithelial carcinoma (A549) cell lines, respectively. The anti-inflammatory potential of Naringenin-LCNs evaluated by qPCR revealed a decreased expression of IL-6, IL-8, IL-1β, and TNF-α in lipopolysaccharide-induced BCi-NS1.1 cells. The activity of LCNs was comparable to the positive control drug Fluticasone propionate (10 nM). The anticancer activity was studied by evaluating the antiproliferative (MTT and trypan blue assays), antimigratory (scratch wound healing assay, modified Boyden chamber assay, and immunoblot), and anticolony formation activity in A549 cells. Naringenin LCNs showed promising antiproliferative, antimigratory, and anticolony formation activities in A549 cells, in vitro. Therefore, based on our observations and results, we conclude that Naringenin-LCNs may be employed as a potential therapy-based intervention to ameliorate airway inflammation and to inhibit the progression of lung cancer. Practical applications Naringenin was encapsulated into liquid crystalline nanoparticles, thus, attributing to their sustained-release nature. In addition, Naringenin-loaded LCNs efficiently reduced the levels of pro-inflammatory markers, namely, IL-1β, IL-6, TNF-α, and IL-8. In addition, the Naringenin-loaded LCNs also possess potent anticancer activity, when tested in the A549 cell line, as revealed by the inhibition of proliferation and migration of cells. They also attenuated colony formation and induced apoptosis in the A549 cells. The findings from our study could form the basis for future research that may be translated into an in vivo model to validate the possible therapeutic alternative for lung cancer using Naringenin-loaded LCNs. In addition, the applications of
Exosomes are the phospholipid-membrane-bound subpopulation of extracellular vesicles derived from the plasma membrane. The main activity of exosomes is cellular communication. In cancer, exosomes play an important rolefrom two distinct perspectives, one related to carcinogenesis and the other as theragnostic and drug delivery tools. The outer phospholipid membrane of Exosome improves drug targeting efficiency. . Some of the vital features of exosomes such as biocompatibility, low toxicity, and low immunogenicity make it a more exciting drug delivery system. Exosome-based drug delivery is a new innovative approach to cancer treatment. Exosome-associated biomarker analysis heralded a new era of cancer diagnostics in a more specific way. This Review focuses on exosome biogenesis, sources, isolation, interrelationship with cancer and exosome-related cancer biomarkers, drug loading methods, exosome-based biomolecule delivery, advances and limitations of exosome-based drug delivery, and exosome-based drug delivery in clinical settings studies. The exosome-based understanding of cancer will change the diagnostic and therapeutic approach in the future.
BackgroundSilver nanoparticles (AgNP), the most popular nano-compounds, possess unique properties. Albizia adianthifolia (AA) is a plant of the Fabaceae family that is rich in saponins. The biological properties of a novel AgNP, synthesized from an aqueous leaf extract of AA (AAAgNP), were investigated on A549 lung cells. Cell viability was determined by the MTT assay. Cellular oxidative status (lipid peroxidation and glutathione (GSH) levels), ATP concentration, caspase-3/-7, -8 and −9 activities were determined. Apoptosis, mitochondrial (mt) membrane depolarization (flow cytometry) and DNA fragmentation (comet assay) were assessed. The expression of CD95 receptors, p53, bax, PARP-1 and smac/DIABLO was evaluated by flow cytometry and/or western blotting.ResultsSilver nanoparticles of AA caused a dose-dependent decrease in cell viability with a significant increase in lipid peroxidation (5-fold vs. control; p = 0.0098) and decreased intracellular GSH (p = 0.1184). A significant 2.5-fold decrease in cellular ATP was observed upon AAAgNP exposure (p = 0.0040) with a highly significant elevation in mt depolarization (3.3-fold vs. control; p < 0.0001). Apoptosis was also significantly higher (1.5-fold) in AAAgNP treated cells (p < 0.0001) with a significant decline in expression of CD95 receptors (p = 0.0416). Silver nanoparticles of AA caused a significant 2.5-fold reduction in caspase-8 activity (p = 0.0024) with contrasting increases in caspase-3/-7 (1.7-fold vs. control; p = 0.0180) and −9 activity (1.4-fold vs. control; p = 0.0117). Western blots showed increased expression of smac/DIABLO (4.1-fold) in treated cells (p = 0.0033). Furthermore, AAAgNP significantly increased the expression of p53, bax and PARP-1 (1.2-fold; p = 0.0498, 1.6-fold; p = 0.0083 and 1.1-fold; p = 0.0359 respectively).ConclusionData suggests that AAAgNP induces cell death in the A549 lung cells via the mt mediated intrinsic apoptotic program. Further investigation is required to potentiate the use of this novel compound in cancer therapy trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.