BackgroundSilver nanoparticles (AgNP), the most popular nano-compounds, possess unique properties. Albizia adianthifolia (AA) is a plant of the Fabaceae family that is rich in saponins. The biological properties of a novel AgNP, synthesized from an aqueous leaf extract of AA (AAAgNP), were investigated on A549 lung cells. Cell viability was determined by the MTT assay. Cellular oxidative status (lipid peroxidation and glutathione (GSH) levels), ATP concentration, caspase-3/-7, -8 and −9 activities were determined. Apoptosis, mitochondrial (mt) membrane depolarization (flow cytometry) and DNA fragmentation (comet assay) were assessed. The expression of CD95 receptors, p53, bax, PARP-1 and smac/DIABLO was evaluated by flow cytometry and/or western blotting.ResultsSilver nanoparticles of AA caused a dose-dependent decrease in cell viability with a significant increase in lipid peroxidation (5-fold vs. control; p = 0.0098) and decreased intracellular GSH (p = 0.1184). A significant 2.5-fold decrease in cellular ATP was observed upon AAAgNP exposure (p = 0.0040) with a highly significant elevation in mt depolarization (3.3-fold vs. control; p < 0.0001). Apoptosis was also significantly higher (1.5-fold) in AAAgNP treated cells (p < 0.0001) with a significant decline in expression of CD95 receptors (p = 0.0416). Silver nanoparticles of AA caused a significant 2.5-fold reduction in caspase-8 activity (p = 0.0024) with contrasting increases in caspase-3/-7 (1.7-fold vs. control; p = 0.0180) and −9 activity (1.4-fold vs. control; p = 0.0117). Western blots showed increased expression of smac/DIABLO (4.1-fold) in treated cells (p = 0.0033). Furthermore, AAAgNP significantly increased the expression of p53, bax and PARP-1 (1.2-fold; p = 0.0498, 1.6-fold; p = 0.0083 and 1.1-fold; p = 0.0359 respectively).ConclusionData suggests that AAAgNP induces cell death in the A549 lung cells via the mt mediated intrinsic apoptotic program. Further investigation is required to potentiate the use of this novel compound in cancer therapy trials.
The hazardous effects of current nanoparticle synthesis methods have steered researchers to focus on developing newer eco-friendly methods for synthesizing nanoparticles using non-toxic chemicals. Owing to the diverse applications of nanoparticles in various fields such as catalysis, medicine, diagnostics, and sensors, several novel green approaches have been explored for synthesizing nanoparticles using different natural sources such as plants, algae, bacteria, and fungi. Hence, in the present work, a green method for the synthesis of gold nanoparticles (AuNPs) under ambient conditions using aqueous extracts of marine brown algae is reported and the synthesized AuNPs were evaluated for their catalytic efficiency. The aqueous extracts of algae comprise reducing as well as capping agents required for the formation of AuNPs. The Fourier transform infrared spectra of the extracts revealed the presence of compounds having hydroxyl groups that are largely responsible for the reduction of auric chloride to AuNPs at room temperature. Results from high-resolution transmission electron microscopy and dynamic light scattering studies suggested that most of the biosynthesized AuNPs are nearly spherical in shape with an average size in the range of 27-35 nm. High negative values of zeta potential measurement confirmed the stability of AuNPs. Moreover, the reduction kinetics of AuNPs studied by UV-visible spectrophotometry showed that they have good catalytic efficiency in the degradation of dyes as well as reduction of nitro compounds in the presence of sodium borohydride as reducing agent. This simple process for the biosynthesis of gold nanoparticles is rapid, cost-effective and eco-friendly. The formation of AuNPs was observed with the change of pale yellow gold solution to ruby red color of gold nanoparticles and confirmed by surface plasmon spectra using UV-visible spectroscopy. Nanoparticles synthesized through such environmentally benign routes can be used for synthesizing many other metal nanoparticles as well as for a wide range of biomedical applications, for commercial production on a large scale and also can be used as efficient catalysts for different organic reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.