Seaweeds are attractive as a sustainable aquaculture crop for food, feed, bioenergy and biomolecules. Further, the non-value ecosystem services of seaweed cultivation (i.e. nutrient recapture) are gaining interest as an instrument towards sustainable aquaculture and for fulfilling the aims of the EU Marine Strategy Framework Directive. Environmental factors determine the yield and quality of the cultivated seaweed biomass and, in return, the seaweed aquaculture affects the marine environment by nutrient assimilation. Consequently, site selection is critical for obtaining optimal biomass yield and quality and for successful bio-mitigation. In this study, 5 sites for cultivation of Saccharina latissima were selected within a eutrophic water body to guide site selection for future kelp cultivation activities. Results were coupled to marine monitoring data to explore the relationship between environmental conditions and cultivation success. The biomass yields fluctuated 10-fold between sites due to local variations in light and nutrient availability. Yields were generally low, i.e. up to 510 g fresh weight (FW) per meter seeded line; however, the dry matter contents of protein and high-value pigments were high (up to 17% protein and 0.1% fucoxanthin). Growth performance, biomass quality and bio-mitigation potential was restricted by low availability of light and bioavailable phosphorus, and biofouling through juvenile suspension feeders was a critical factor at all cultivation sites. At specific sites, the tissue metal contents (Pb and Hg) exceeded the limit values for feed or food. Our results emphasize the importance of careful site selection before establishing large-scale cultivation, and stress the challenges and benefits of kelp cultivation in eutrophic waters.
The aim of the study is to assess the efficacy of seaweed for circular nutrient management to reduce eutrophication levels in the aquatic environment. We performed a comparative Life Cycle Assessment (LCA) of two reference waste management systems treating seaweed as biowaste, i.e. landfill disposal and combustion, and an alternative scenario using the seaweed Saccharina latissima as a resource for biobased fertilizer production. Life Cycle Impact Assessment (LCIA) methods were improved by using a cradle-to-cradle approach, quantifying fate factors for nitrogen and phosphorus loss from fertilized agriculture to the aquatic environment. We also differentiated between nitrogen- and phosphorus-limited marine water to improve the traditional freshwater impact category, making this indicator suitable for decision support in relation to coastal water management schemes. Offshore cultivation of Saccharina latissima with an average productivity of 150Mg/km(2) in Danish waters in 2014 was applied to a cultivation scenario of 208km(2). The bioresource scenario performs better than conventional biowaste management systems, delivering a net reduction in aquatic eutrophication levels of 32.29kgNeq. and 16.58kgPO4(3-)eq. per Mg (dry weight) of seaweed, quantified by the ReCiPe and CML impact assessment methods, respectively. Seaweed cultivation, harvest and reuse of excess nutrients from the aquatic environment is a promising approach for sustainable resource cycling in a future regenerative economy that exploits manmade emissions as a resource for closed loop biobased production while significantly reducing eutrophication levels in 3 out of 7 Danish river basin districts. We obtained at least 10% bioextraction of phosphorus manmade emissions (10%, 89% and >100%) and contributed significantly to local nitrogen reduction goals according to the Water Framework Directive (23%, 78% and >100% of the target).
Dredging blue mussels (Mytilus edulis) and thus removing structural elements, inducing resuspension of sediment as well as reducing filtration capacity, will inevitably affect the ecosystem. The study demonstrates that the impacts of fishing can be reduced through gear developments. A new light dredge was tested on commercial vessels using two different experimental setups. First, a twin haul experiment tested the standard gear (i.e., a Dutch dredge) against the light dredge by fishing the two gears side by side onboard the same vessel. Second, a single dredge experiment tested the absolute performance of the two gears by fishing in areas with a known blue mussel density. Results from the twin haul experiment demonstrate that the weight of sediment retained in the gear per square metre fished is 49% less in the light dredge compared with the Dutch dredge which will reduce resuspension of sediment at the surface. Also, the drag resistance of the light dredge was significantly less (177.1 vs. 202.7 kg m‐1). In the twin haul experiment no significant difference was found in the catch per unit effort (CPUE) of the two gears. The single dredge experiment, on the other hand, demonstrated a significant increase in CPUE exceeding 200% when using the light dredge. Seafloor tracks made by the two dredges could not be distinguished by use of side‐scan sonar and the tracks were still detectable 2 months after fishing. It was concluded that replacement of the Dutch dredge with the light dredge would reduce the impact of the fishery on the ecosystem by (i) reducing resuspension of sediment, (ii) reducing fuel consumption, and (iii) potentially reducing energy transfer to the sediment through a reduced gear drag resistance. A potential increase in catch efficiency may reduce the area affected. Fishing with the light dredge is discussed in relation to management of Natura 2000 sites. Copyright © 2014 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.