Milk yield of the dairy cow follows a pattern termed the lactation curve. We have investigated the cellular background for this pattern. Seven mammary biopsies were obtained from each of 10 cows: at the end of lactation (d 347, equal to d 77 before next parturition); during the dry period at d 48 (4 d after dry off); 16 d before parturition; and during lactation at d 14, 42, 88, and 172. The fraction of proliferating (staining positive for Ki-67) alveolar cells was higher during the dry period (8.6%) than during lactation (0.5%). The fraction of apoptotic (staining positive by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) alveolar cells was higher immediately after dry off (0.37%) and in early lactation (0.76%) than during other periods (0.15%). The enzyme activities of fatty acid synthetase, acetyl CoA-carboxylase, and galactosyl transferase were approximately 12-, 11-, and 4-fold higher, respectively, during lactation than during the dry period. In conclusion, mammary cell proliferation is substantial in a period near parturition but otherwise low, and apoptosis is elevated at dry off and in early lactation. The increase in apoptosis in early lactation may be due to discarding nonfunctional or senescent cells or to removal of a surplus of newly synthesized cells. The activity of selected enzymes central for milk synthesis is probably not limiting for milk production.
The aim of the study was to investigate the effects of diet energy density and milking frequency on mammary cell turnover and synthetic capacity in dairy cows. Experiment 1 used 20 dairy cows. From d 4 to wk 16 postpartum, the cows were fed either a low-energy density or a high-energy density diet. From d 4 through wk 8, half of the cows in each group were milked 3 times (3x) or 2 times (2x) daily. From wk 9 to 16, all cows were milked 2 times daily. Mammary biopsies were obtained at wk 8 and 16 postpartum. In experiment 2, udders of 18 individual cows were milked diagonally 2x and 4x, and biopsies were obtained after 7 d. In experiment 1, cows on the low-energy density diet yielded 17 and 24% less milk during wk 3 to 8 and wk 11 to 16 postpartum, respectively. Furthermore, at 8 wk postpartum, mammary enzyme activities tended to be lower and mammary cell proliferation was lower in cows on the low-energy density diet. Three times daily milking during the first 8 wk postpartum resulted in 11% higher milk yield. Mammary cell turnover or enzyme activities were not significantly affected at 8 wk. The 3x milking for 8 wk resulted only in a transient carryover effect on milk yield and neither cell turnover nor enzyme activities were significantly affected at 16 wk postpartum. In experiment 2, mammary cell turnover and enzyme activity were unaffected after 7 d of 4x milking although milk yield increased by 18%. We conclude that nutrient restriction affects mammary cell turnover and possible enzyme activity, and that tuning of negative feedback loops in response to filling of the gland may be the dominating effects of changes in milking frequency.
Supplementation of benzoic acid to pig diets reduces the pH of urine and may thereby affect emissions of ammonia and other gases from slurry, including sulfur-containing compounds that are expected to play a role in odor emission. Over a period of 112 d, we investigated hydrogen sulfide (H(2)S), methanethiol (MT), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), and dimethyl trisulfide (DMTS), as well as ammonia and methane emissions from stored pig slurry. The slurry was derived from a feeding experiment with four pig diets in a factorial design with 2% (w/w) benzoic acid and 1% (w/w) methionine supplementation as treatments. Benzoic acid reduced slurry pH by 1 to 1.5 units and ammonia emissions by 60 to 70% for up to 2 mo of storage, and a considerable, but transitory reduction of methane emissions was also observed after 4 to 5 wk. All five volatile sulfur (S) compounds were identified in gas emitted from the slurry of the control treatment, which came from pigs fed according to Danish recommendations for amino acids and minerals. The emission patterns of volatile S compounds suggested an intense cycling between pools of organic S in the slurries, with urinary sulfate as the main source. Diet supplementation with methionine significantly increased all S emissions. Diet supplementation with benzoic acid reduced emissions of H(2)S and DMTS compared with the control slurry and moderately increased the concentrations of MT. Sulfur gas emissions were influenced by a strong interaction between methionine and benzoic acid treatments, which caused a significant increase in emissions of especially MT, but also of DMDS. In conclusion, addition of 2% benzoic acid to pig diets effectively reduced ammonia volatilization, but interactions with dietary S may increase odor problems.
Dietary benzoic acid (BA) supplementation causes a pronounced reduction in urinary pH but only small changes in blood pH. The present study aimed to investigate the portal absorption profile, hepatic metabolism of BA, and renal excretion of hippuric acid (HA) underlying the relatively small impact of BA on systemic acid-base status. Eight growing pigs (BW = 63 +/- 1 kg at sampling) fitted with permanent indwelling catheters in the abdominal aorta, hepatic portal vein, hepatic vein, and mesenteric vein were allocated to 4 sampling blocks and randomly assigned to control (CON; nonsupplemented diet) or BA supplementation (B; control diet + 1% BA top-dressed). Feed intake was restricted to 3.6% of BW and the ration divided into 3 equally sized meals offered at 8-h intervals. Blood pH (7.465 and 7.486 +/- 0.004) and urinary pH (4.99 and 7.01 +/- 0.09) were less (P = 0.03 and P < 0.01) in B compared with CON. The arterial concentration, net portal flux, and net hepatic uptake of BA increased (P < 0.01) in B compared with CON. The net portal flux of BA increased (P < 0.01) after feeding with B, but remained positive (P < 0.01) at all sampling times (n = 8). Recovery of dietary BA as increased net portal flux and hepatic uptake of BA was 87 +/- 5% and 89 +/- 15%, respectively. The recovery of dietary BA as urinary excretion of BA and HA was 0.08 +/- 0.02% and 85 +/- 7%, respectively. It is concluded that the small impact of BA supplementation on systemic acid-base status was caused by a protracted BA absorption and efficient hepatic extraction and glycine conjugation in combination with efficient renal clearance of HA. Together, these physiological mechanisms prevented major BA and HA accumulation in body fluids.
The mechanisms involved in regulating mammary cell turnover during the pregnancy-lactation cycle in dairy cows are unclear. The objective of present experiment was to describe expression of genes encoding proteins known to be involved in pathways regulating mammary cell proliferation, apoptosis, differentiation, cell survival, and tissue remodeling. Mammary gland biopsies were taken 7 times during the pregnancy-lactation cycle of 10 dairy cows, and samples were analyzed by immunohistochemistry and real-time PCR. Cell proliferation was greatest during the dry period and apoptosis was high in early dry period and early lactation. Based on Fas (tumor necrosis factor receptor superfamily member 6), Fas ligand, and caspase-3, caspase-8, and caspase-9 gene expression, no indication was found of a stage-dependent shift between the extrinsic and intrinsic pathways leading to apoptosis. Gene expression of microsomal glutathione S-transferase (mGST) did not vary significantly, whereas B-cell leukemia/lymphoma 2 (Bcl-2) and BCL2-associated X protein (Bax) gene expression was greatest during the dry period and early lactation and coincided with high cell turnover. Gene expression of early response genes c-Fos, c-Jun, and c-Myc correlated to neither rate of cell proliferation nor plasma concentration of insulin-like growth factor (IGF)-I and insulin. Gene expression of nuclear factor of kappa light chain gene enhancer in B-cells (NFkappaB) and NFkappaB inhibitor alpha was greatest in the periparturient period, and NFkappaB gene expression coincided with an anticipated need for cell survival factors. Expression of transforming growth factor beta (TGF-beta) receptor 1 and 2 mRNA was greatest in early lactation, whereas TGF-beta1 did not vary significant during the pregnancy-lactation cycle. Even though our results on the TGF-beta system did not comply with other studies, the gene expression pattern of the TGF-beta receptors indicates a role in regulating apoptosis in early lactation. Signal transducer and activator of transcription 5 (STAT5) gene expression was high in the periparturient period, which suggests a role for STAT5 in regulation of mammary cell proliferation and differentiation in dairy cows. Expression of tissue-plasminogen activator, plasminogen activator inhibitor-1, and IGF binding protein 5 genes was greatest in early lactation, suggesting a role for IGF binding protein 5 in coordinating regulation of apoptosis and tissue remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.